分析 (1)由數(shù)列{an}的前n項(xiàng)和Sn=-an-${(\frac{1}{2})}^{n-1}$+2(n∈N*).可得:a1=S1=-a1-1+2,解得a1.當(dāng)n≥2時(shí),an=Sn-Sn-1,化為:an=$\frac{1}{2}{a}_{{n}_{-1}}$+$(\frac{1}{2})^{n}$.只要證明:bn+1-bn=常數(shù)即可.
(2)cn=log2$\frac{n}{{a}_{n}}$=n,可得:$\frac{1}{{c}_{n}{c}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.利用“裂項(xiàng)求和”與數(shù)列的單調(diào)性即可得出.
解答 (1)證明:∵數(shù)列{an}的前n項(xiàng)和Sn=-an-${(\frac{1}{2})}^{n-1}$+2(n∈N*).
∴a1=S1=-a1-1+2,解得a1=$\frac{1}{2}$.
當(dāng)n≥2時(shí),an=Sn-Sn-1=-an-${(\frac{1}{2})}^{n-1}$+2-$[-{a}_{n-1}-(\frac{1}{2})^{n-2}+2]$,
化為:an=$\frac{1}{2}{a}_{{n}_{-1}}$+$(\frac{1}{2})^{n}$.
∴bn+1-bn=2n+1an+1-2nan=${2}^{n+1}[\frac{1}{2}{a}_{n}+(\frac{1}{2})^{n+1}]$-2nan=1,
∴數(shù)列{bn}是等差數(shù)列,首項(xiàng)b1=2a1=1,公差為1.
∴bn=1+(n-1)=n.
∴an=$\frac{n}{{2}^{n}}$.
(2)解:cn=log2$\frac{n}{{a}_{n}}$=n,
∴$\frac{1}{{c}_{n}{c}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
∴數(shù)列{$\frac{1}{{c}_{n}{c}_{n+1}}$}的前n項(xiàng)和為Tn=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.
不等式λ≤Tn化為:λ≤1-$\frac{1}{n+1}$,
∵不等式λ≤Tn對(duì)任意的n∈N*恒成立,
∴$λ≤\frac{1}{2}$.
∴實(shí)數(shù)λ的最大值是$\frac{1}{2}$.
點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式、“裂項(xiàng)求和”方法、數(shù)列的單調(diào)性與不等式的性質(zhì)、對(duì)數(shù)的運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①②③ | B. | ②④⑤ | C. | ④⑤ | D. | ②⑤ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{x^2}{3}-\frac{{4{y^2}}}{3}=1$ | B. | $\frac{{4{x^2}}}{3}-\frac{y^2}{3}=1$ | ||
C. | $\frac{{4{x^2}}}{3}-\frac{y^2}{3}=1$或$\frac{x^2}{3}-\frac{{4{y^2}}}{3}=1$ | D. | $\frac{{4{y^2}}}{3}-\frac{x^2}{3}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 函數(shù)f(x)在$[-\frac{π}{2},\frac{π}{2}]$上單調(diào)遞增 | B. | 函數(shù)f(x)的值域是[-1,1] | ||
C. | ?x0∈R,f(-x0)≠-f(x0) | D. | ?x∈R,f(-x)≠f(x) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com