【題目】已知圓:,定點(diǎn),是圓上的一動(dòng)點(diǎn),線(xiàn)段的垂直平分線(xiàn)交半徑于點(diǎn).
(1)求點(diǎn)的軌跡的方程;
(2)四邊形的四個(gè)頂點(diǎn)都在曲線(xiàn)上,且對(duì)角線(xiàn)、過(guò)原點(diǎn),若,求證:四邊形的面積為定值,并求出此定值.
【答案】(1);(2)證明詳見(jiàn)解析,定值為.
【解析】
(1)利用橢圓的定義即可得到點(diǎn)的軌跡的方程;
(2)不妨設(shè)點(diǎn)、位于軸的上方,則直線(xiàn)的斜率存在,設(shè)的方程為,與橢圓方程聯(lián)立,求出四邊形的面積,即可證明結(jié)論.
(1)因?yàn)?/span>在線(xiàn)段的中垂線(xiàn)上,所以.
所以,
所以軌跡是以,為焦點(diǎn)的橢圓,且,,所以,
故軌跡的方程.
(2)不妨設(shè)點(diǎn)、位于軸的上方,則直線(xiàn)的斜率存在,設(shè)的方程為
,,.
聯(lián)立,得,
則,.①
由,
得.②
由①、②,得.③
設(shè)原點(diǎn)到直線(xiàn)的距離為,
,
.④
由③、④,得,故四邊形的面積為定值,且定值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為常數(shù),).給你四個(gè)函數(shù):①;②;③;④.
(1)當(dāng)時(shí),求不等式的解集;
(2)求函數(shù)的最小值;
(3)在給你的四個(gè)函數(shù)中,請(qǐng)選擇一個(gè)函數(shù)(不需寫(xiě)出選擇過(guò)程和理由),該函數(shù)記為,滿(mǎn)足條件:存在實(shí)數(shù)a,使得關(guān)于x的不等式的解集為,其中常數(shù)s,,且.對(duì)選擇的和任意,不等式恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著人們生活水平的不斷提高,人們對(duì)餐飲服務(wù)行業(yè)的要求也越來(lái)越高,由于工作繁忙無(wú)法抽出時(shí)間來(lái)享受美味,這樣網(wǎng)上外賣(mài)訂餐應(yīng)運(yùn)而生.若某商家的一款外賣(mài)便當(dāng)每月的銷(xiāo)售量(單位:千盒)與銷(xiāo)售價(jià)格(單位:元/盒)滿(mǎn)足關(guān)系式其中,為常數(shù),已知銷(xiāo)售價(jià)格為14元/盒時(shí),每月可售出21千盒.
(1)求的值;
(2)假設(shè)該款便當(dāng)?shù)氖澄锊牧、員工工資、外賣(mài)配送費(fèi)等所有成本折合為每盒12元(只考慮銷(xiāo)售出的便當(dāng)盒數(shù)),試確定銷(xiāo)售價(jià)格的值,使該店每月銷(xiāo)售便當(dāng)所獲得的利潤(rùn)最大.(結(jié)果保留一位小數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求的最大值;
(2)證明:對(duì)任意的,都有;
(3)設(shè),比較與的大小,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】恩施州某電影院共有1000個(gè)座位,票價(jià)不分等次,根據(jù)電影院的經(jīng)營(yíng)經(jīng)驗(yàn),當(dāng)每張票價(jià)不超過(guò)10元時(shí)、票可全部售出;當(dāng)票價(jià)高于10元時(shí),每提高1元,將有30張票不能售出,為了獲得更好的收入,需要給電影院一個(gè)合適的票價(jià),基本條件是:①為了方便找零和算賬,票價(jià)定為1元的整數(shù)倍.②影院放映一場(chǎng)電影的成本是4000元,票房收入必須高于成本,用x(元)表示每張票價(jià),用y(元)表示該電影放映一場(chǎng)的純收入(除去成本后的收入).
(1)求函數(shù)y=f(x)的解析式;
(2)票價(jià)定為多少時(shí),電影放映一場(chǎng)的純收入最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若圓和圓關(guān)于直線(xiàn)對(duì)稱(chēng),過(guò)點(diǎn)的圓與軸相切,則圓心的軌跡方程是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次人才招聘會(huì)上,有、兩家公司分別開(kāi)出了他們的工資標(biāo)準(zhǔn):公司允諾第一個(gè)月工資為8000元,以后每年月工資比上一年月工資增加500元;公司允諾第一年月工資也為8000元,以后每年月工資在上一年的月工資基礎(chǔ)上遞增,設(shè)某人年初被、兩家公司同時(shí)錄取,試問(wèn):
(1)若該人分別在公司或公司連續(xù)工作年,則他在第年的月工資分別是多少;
(2)該人打算連續(xù)在一家公司工作10年,僅從工資收入總量較多作為應(yīng)聘的標(biāo)準(zhǔn)(不計(jì)其他因素),該人應(yīng)該選擇哪家公司,為什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】雙曲線(xiàn) 的左、右焦點(diǎn)分別為,過(guò)作傾斜角為的直線(xiàn)與軸和雙曲線(xiàn)的右支分別交于兩點(diǎn),若點(diǎn)平分線(xiàn)段,則該雙曲線(xiàn)的離心率是( )
A. B. C. 2 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,橢圓與軸交于 兩點(diǎn),且.
(1)求橢圓的方程;
(2)設(shè)點(diǎn)是橢圓上的一個(gè)動(dòng)點(diǎn),且直線(xiàn)與直線(xiàn)分別交于 兩點(diǎn).是否存在點(diǎn)使得以 為直徑的圓經(jīng)過(guò)點(diǎn)?若存在,求出點(diǎn)的橫坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com