【題目】如圖所示,拋物線的焦點(diǎn)為.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)過的兩條直線分別與拋物線交于點(diǎn),與,(點(diǎn),在軸的上方).
①若,求直線的斜率;
②設(shè)直線的斜率為,直線的斜率為,若,求證:直線過定點(diǎn).
【答案】(1);(2);(3)
【解析】
(1)根據(jù)焦點(diǎn)可確定p,即可寫出方程(2)①設(shè),,利用向量關(guān)系得,代入拋物線方程,可得,,結(jié)合F(1,0)即可求出斜率. ②根據(jù)可得 ,當(dāng)存在時,設(shè)直線:,聯(lián)立拋物線方程,得,根據(jù)可得,代入直線方程即可求出定點(diǎn),當(dāng)當(dāng)不存在時,檢驗(yàn)過定點(diǎn)即可.
(1)因?yàn)?/span>,所以p=2,
所以方程為
(2)法一:,,
得
代入得,則,,
法二:由 ①
得,代入①求,
而,得
法三:利用拋物線的定義轉(zhuǎn)化為到準(zhǔn)線的距離,得
(3),得
,同理 ①
代入①得
,又有
而
當(dāng)存在時,設(shè)直線:
得:
得
過定點(diǎn)
當(dāng)不存在時,檢驗(yàn)得過定點(diǎn)。
綜上所述,直線過定點(diǎn)。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x﹣2)ex+a(x﹣1)2 .
(1)討論f(x)的單調(diào)性;
(2)若f(x)有兩個零點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC—A1B1C1中,AC=1,AB=,BC=,AA1=.
(1)求證:A1B⊥B1C;
(2)求二面角A1—B1C—B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知直線y=﹣2x+1與圓O:x2+y2=r2(r>0)交于M,N兩點(diǎn),且MN=.
(1)求M,N的坐標(biāo);
(2)求過O,M,N三點(diǎn)的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在公園游園活動中,有這樣一個游戲項(xiàng)目:甲箱子里裝有3個白球和2個黑球,乙箱子里裝有1個白球和2個黑球,這些球除顏色外完全相同.每次游戲都從這兩個箱子里各隨機(jī)地摸出2個球,若摸出的白球不少于2個,則獲獎.(每次游戲結(jié)束后將球放回原箱)
(1)求在每一次游戲中獲獎的概率;
(2)在三次游戲中,記獲獎次數(shù)為,求的概率分布和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面四個結(jié)論: ①數(shù)列可以看作是一個定義在正整數(shù)集(或它的有限子集{1,2,3……,n})上的函數(shù);
②數(shù)列若用圖象表示,從圖象上看都是一群孤立的點(diǎn);
③數(shù)列的項(xiàng)數(shù)是無限的;
④數(shù)列通項(xiàng)的表示式是唯一的.
其中正確的是( )
A.①②
B.①②③
C.②③
D.①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若0<a<b,且a+b=1,則下列各式中最大的是( )
A.﹣1
B.log2a+log2b+1
C.log2b
D.log2(a3+a2b+ab2+b3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某加工廠用某原料由車間加工出A產(chǎn)品,由乙車間加工出B產(chǎn)品.甲車間加工一箱原料需耗費(fèi)工時10小時可加工出7千克A產(chǎn)品,每千克A產(chǎn)品獲利40元.乙車間加工一箱原料需耗費(fèi)工時6小時可加工出4千克B產(chǎn)品,每千克B產(chǎn)品獲利50元.甲、乙兩車間每天功能完成至多70多箱原料的加工,每天甲、乙車間耗費(fèi)工時總和不得超過480小時,甲、乙兩車間每天獲利最大的生產(chǎn)計(jì)劃為( )
A.甲車間加工原料10箱,乙車間加工原料60箱
B.甲車間加工原料15箱,乙車間加工原料55箱
C.甲車間加工原料18箱,乙車間加工原料50箱
D.甲車間加工原料40箱,乙車間加工原料30箱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=1+x﹣ +…+ ,g(x)=1﹣x+ ﹣…﹣ ,設(shè)函數(shù)F(x)=f(x+4)g(x﹣5),且函數(shù)F(x)的零點(diǎn)均在區(qū)間[a,b](a<b,a,b∈Z)內(nèi),則b﹣a的最小值為( )
A.9
B.10
C.11
D.12
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com