分析 (1)利用等差數(shù)列與等比數(shù)列的通項公式即可得出;
(2)利用“錯位相減法”與等比數(shù)列的前n項和公式即可得出.
解答 解:(1)設(shè)等比數(shù)列{an}的公比為q,∵a1=1,且4a2,2a3,a4成等差數(shù)列.
∴2×2a3=4a2+a4.
∴4a2q=4a2+${a}_{2}{q}^{2}$,化為q2-4q+4=0,解得q=2.
∴an=2n-1.
(2)Tn=na1+(n-1)a2+…+2an-1+an=n+(n-1)×2+(n-2)×22+…+2×2n-2+2n-1,
2Tn=n×2+(n-1)×22+…+2×2n-1+2n,
∴-Tn=n-2-22-…-2n-1-2n=n+1-$\frac{{2}^{n}-1}{2-1}$-2n=n+2-2n+1,
∴Tn=2n+1-n-2.
點評 本題考查了“錯位相減法”、等差數(shù)列與等比數(shù)列的通項公式及其前n項和公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4+6π | B. | 8+6π | C. | 4+12π | D. | 8+12π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 22016 | B. | -22016 | C. | 22016i | D. | -i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com