A. | $\frac{5}{3}$ | B. | $\frac{8}{3}$ | C. | 9 | D. | 24 |
分析 由$\overrightarrow{a}$⊥$\overrightarrow$,可得$\overrightarrow{a}$•$\overrightarrow$=0,化為3x+2y=2,再利用“乘1法”與基本不等式的性質(zhì)即可得出.
解答 解:∵$\overrightarrow{a}$⊥$\overrightarrow$,
∴$\overrightarrow{a}$•$\overrightarrow$=-3x-2(y-1)=0,
∴3x+2y=2,
又x,y為正數(shù),
則$\frac{2}{3x}$+$\frac{4}{y}$=$\frac{1}{2}(3x+2y)$$(\frac{2}{3x}+\frac{4}{y})$=$5+\frac{2y}{3x}+\frac{6x}{y}$≥9.當且僅當$\left\{{\begin{array}{l}{{y^2}=9{x^2}}\\{3x+2y=2}\end{array}}\right.$,即$\left\{{\begin{array}{l}{x=\frac{2}{9}}\\{y=\frac{2}{3}}\end{array}}\right.$時等號成立,
∴$\frac{2}{3x}$+$\frac{4}{y}$的最小值是9.
故選:C.
點評 本題考查了“乘1法”與基本不等式的性質(zhì)、向量垂直與數(shù)量積的關系,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-2,2] | B. | (-2,2) | C. | (-∞,2)∪(2,+∞) | D. | (-∞,2]∪[2,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=3-x | B. | y=x | C. | y=$\frac{1}{x}$ | D. | y=-x2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 命題p:?x∈R,使得x2-1≥0,命題q:?x∈R,使得x2-x-1≥0,則命題p∨¬q是假命題 | |
B. | 非零向量$\overrightarrow{a}$,$\overrightarrow$,“$\overrightarrow{a}$•$\overrightarrow$>0”是“$\overrightarrow{a}$與$\overrightarrow$夾角是銳角”的充要條件 | |
C. | “兩直線2x-my-1=0與x+my-1=0垂直”是“$m=±\sqrt{2}$”的充要條件 | |
D. | “a=1”是“函數(shù)f(x)=x2+|x+a-1|(x∈R)為偶函數(shù)”的充分不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com