1.已知函數(shù)f(x)=|x+1|-|2x-1|.
(1)求不等式f(x)<-1的解集;
(2)若不等式f(x)≤a|x-2|對(duì)任意的x∈R恒成立,求實(shí)數(shù)a的取值范圍.

分析 (1)把要解的不等式等價(jià)轉(zhuǎn)化為與之等價(jià)的三個(gè)不等式組,求出每個(gè)不等式組的解集,再取并集,即得所求.
(2)由題意可得,|x+1|-|2x-1|≤a|x-2|恒成立,即a≥|$\frac{x+1}{x-2}$|-|$\frac{2x-1}{x-2}$|=|1+$\frac{3}{x-2}$|-|2+$\frac{3}{x-2}$|,利用絕對(duì)值三角不等式求得|1+$\frac{3}{x-2}$|-|2+$\frac{3}{x-2}$|的最大值,可得a的范圍.

解答 解:(1)不等式f(x)<-1,即$\left\{\begin{array}{l}{x<-1}\\{x-2<-1}\end{array}\right.$①,或$\left\{\begin{array}{l}{-1≤x≤\frac{1}{2}}\\{3x<-1}\end{array}\right.$ ②,或 $\left\{\begin{array}{l}{x>\frac{1}{2}}\\{2-x<-1}\end{array}\right.$.
解①求得x<-1;解②求得-1≤x<-$\frac{1}{3}$,解③求得x>3,
故不等式的解集為{x|x<-$\frac{1}{3}$ 或x>3}.
(2)若不等式f(x)≤a|x-2|對(duì)任意的x∈R恒成立,即|x+1|-|2x-1|≤a|x-2|恒成立,
a≥|$\frac{x+1}{x-2}$|-|$\frac{2x-1}{x-2}$|=|1+$\frac{3}{x-2}$|-|2+$\frac{3}{x-2}$|,
而|1+$\frac{3}{x-2}$|-|2+$\frac{3}{x-2}$|≤|(1+$\frac{3}{x-2}$)-(2+$\frac{3}{x-2}$)|=1,
∴a≥1.

點(diǎn)評(píng) 本題主要考查絕對(duì)值不等式的解法,函數(shù)的恒成立問(wèn)題,絕對(duì)值三角不等式,體現(xiàn)了等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若$\underset{lim}{n→∞}$(2n+$\frac{a{n}^{2}-2n-1}{bn+3}$)=$\frac{1}{2}$,則a+b=-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.向量$\overrightarrow{a}$=(3,-2),$\overrightarrow$=(-x,y-1),且$\overrightarrow{a}$⊥$\overrightarrow$,若x,y為正數(shù),則$\frac{2}{3x}$+$\frac{4}{y}$的最小值是( 。
A.$\frac{5}{3}$B.$\frac{8}{3}$C.9D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=|x-10|+|x-20|,且滿足f(x)<10a+10(a∈R)的解集不是空集.
(Ⅰ)求實(shí)數(shù)a的取值集合A
(Ⅱ)若b∈A,a≠b,求證aabb>abba

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.設(shè)拋物線y2=4x的焦點(diǎn)為F,A,B兩點(diǎn)在拋物線上,且A,B,F(xiàn)三點(diǎn)共線,過(guò)AB的中點(diǎn)M作y軸的垂線與拋物線在第一象限內(nèi)交于點(diǎn)P,若|PF|=$\frac{3}{2}$,則M點(diǎn)的橫坐標(biāo)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.從{1,2,3,4,5,6}中任取兩個(gè)不同的數(shù)m,n(m>n),則$\frac{n}{m}$能夠約分的概率為$\frac{4}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知定義在R上的函數(shù)$f(x)=\frac{{b-{2^x}}}{{{2^x}+a}}$是奇函數(shù).
(Ⅰ)求a,b的值;
(Ⅱ)設(shè)g(x)=f(x)+1,h(x)=lnx
①判斷g(x)的單調(diào)性并說(shuō)明理由;
②若g(s)=h(t),求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.設(shè)函數(shù)f(x)=-x2+2x+3,x∈[0,3]的最大值和最小值分別是M,m,則M+m=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.存在實(shí)數(shù)x使得不等式|x+3|+|x-1|≤22a-3•2a成立,則實(shí)數(shù)a的取值范圍為( 。
A.(-∞,-1]∪[4,+∞)B.[2,+∞)C.[1,2]D.(-∞,1]∪[2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案