等比數(shù)列{an}中,a2=10,a3=20,則a4等于( 。
A、70B、40C、30D、90
考點(diǎn):等比數(shù)列的通項(xiàng)公式
專題:等差數(shù)列與等比數(shù)列
分析:直接利用等比數(shù)列的性質(zhì)求解即可.
解答: 解:等比數(shù)列{an}中,a2=10,a3=20,
a32=a2•a4,a4=40.
故選:B.
點(diǎn)評(píng):本題考查等比數(shù)列的基本性質(zhì)的應(yīng)用,基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,某數(shù)學(xué)興趣小組想測(cè)量一棵樹(shù)CD的高度,他們先在點(diǎn)A處測(cè)得樹(shù)頂C的仰角為30°,然后沿AD方向前行10m,到達(dá)B點(diǎn),在B處測(cè)得樹(shù)頂C的仰角高度為60°(A、B、D三點(diǎn)在同一直線上).請(qǐng)你根據(jù)他們測(cè)量數(shù)據(jù)計(jì)算這棵樹(shù)CD的高度(結(jié)果精確到0.1m).(參考數(shù)據(jù):
2
≈1.414,
3
≈1.732)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知3a=
3
,lgx=a,則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

M={x∈R|(1+k2)x≤k4+4},對(duì)任意的k∈R,總有( 。
A、2∉M,0∉M
B、2∈M,0∈M
C、2∈M,0∉M
D、2∉M,0∈M

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一個(gè)k進(jìn)制數(shù)132(k)與十進(jìn)制數(shù)30相等,則k等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f (t)=log2(2-t)+
t-1
的定義域?yàn)镈.
(Ⅰ) 求D;
(Ⅱ) 若函數(shù)g(x)=x2+2mx-m2在D上存在最小值2,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:如果函數(shù)y=f(x)在定義域內(nèi)給定區(qū)間[a,b]上存在x0(a<x0<b),滿足f(x0)=
f(b)-f(a)
b-a
,則稱函數(shù)y=f(x)是[a,b]上的“平均值函數(shù)”,x0是它的一個(gè)均值點(diǎn).例如y=|x|是[-2,2]上的“平均值函數(shù)”,0就是它的均值點(diǎn).給出以下命題:
①函數(shù)f(x)=cosx-1是[-2π,2π]上的“平均值函數(shù)”;
②若y=f(x)是[a,b]上的“平均值函數(shù)”,則它的均值點(diǎn)x0
a+b
2
;
③若函數(shù)f(x)=x2-mx-1是[-1,1]上的“平均值函數(shù)”,則實(shí)數(shù)m的取值范圍是m∈(0,2);
④若f(x)=lnx是區(qū)間[a,b](b>a≥1)上的“平均值函數(shù)”,x0是它的一個(gè)均值點(diǎn),則lnx0
1
ab

其中的真命題有
 
.(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)g(x)=
1-x
+
1
x
的定義域?yàn)?div id="9ig2lcc" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=elnx,g(x)=
1
e
f(x)-(x+1)(e為自然對(duì)數(shù)).
(1)求函數(shù)g(x)的最大值;
(2)求證:e 1+
1
2
+
1
3
+…
1
n
>n+1(n∈N*

查看答案和解析>>

同步練習(xí)冊(cè)答案