【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過點的直線的參數(shù)方程為為參數(shù)),直線與曲線相交于,兩點.

(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

(2)若,求的值.

【答案】(1)曲線的直角坐標(biāo)方程,直線的普通方程為;(2)。

【解析】

(1)利用代入法消去直線的參數(shù)方程中的參數(shù),可得其普通方程,曲線的極坐標(biāo)方程兩邊同乘以,利用 即可得到曲線的直角坐標(biāo)方程;(2)直線的參數(shù)方程代入曲線的直角坐標(biāo)方程利用韋達定理、直線參數(shù)方程的幾何意義可得結(jié)果.

(1)由,

所以曲線的直角坐標(biāo)方程,

因為,所以,

直線的普通方程為;

(2)直線的參數(shù)方程為為參數(shù)),

代入得:,

設(shè),對應(yīng)的參數(shù)分別為,

,,

由參數(shù),的幾何意義得,,,

,所以,

所以,即,

,或(舍去),

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)列同時滿足:①對于任意的正整數(shù), 恒成立;②對于給定的正整數(shù), 對于任意的正整數(shù)恒成立,則稱數(shù)列是“數(shù)列”.

(1)已知判斷數(shù)列是否為“數(shù)列”,并說明理由;

(2)已知數(shù)列是“數(shù)列”,且存在整數(shù),使得, , 成等差數(shù)列,證明: 是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)在高二下學(xué)期開設(shè)四門數(shù)學(xué)選修課,分別為《數(shù)學(xué)史選講》.《球面上的幾何》.《對稱與群》.《矩陣與變換》.現(xiàn)有甲.乙.丙.丁四位同學(xué)從這四門選修課程中選修一門,且這四位同學(xué)選修的課程互不相同,下面關(guān)于他們選課的一些信息:①甲同學(xué)和丙同學(xué)均不選《球面上的幾何》,也不選《對稱與群》:②乙同學(xué)不選《對稱與群》,也不選《數(shù)學(xué)史選講》:③如果甲同學(xué)不選《數(shù)學(xué)史選講》,那么丁同學(xué)就不選《對稱與群》.若這些信息都是正確的,則丙同學(xué)選修的課程是( 。

A. 《數(shù)學(xué)史選講》B. 《球面上的幾何》C. 《對稱與群》D. 《矩陣與變換》

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)整數(shù)是區(qū)間中的不同整數(shù).證明:集合有這樣的子集存在,它的所有元素之和能被整除.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若的導(dǎo)函數(shù),討論的單調(diào)性;

(2)若是自然對數(shù)的底數(shù)),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的首項, ,

(1)求證:數(shù)列為等比數(shù)列;

(2)記,若Sn<100,求最大正整數(shù)n;

(3)是否存在互不相等的正整數(shù)ms,n,使m,s,n成等差數(shù)列,且am-1,as-1,an-1成等比數(shù)列?如果存在,請給以證明;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為橢圓的右焦點,點上,且軸.

(1)求的方程;

(2)過的直線兩點,交直線于點.判定直線的斜率是否依次構(gòu)成等差數(shù)列?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

是函數(shù)的極值點,1是函數(shù)的一個零點,求的值;

當(dāng)時,討論函數(shù)的單調(diào)性;

若對任意,都存在,使得成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了測量某塔的高度,某人在一條水平公路兩點進行測量.在點測得塔底在南偏西,塔頂仰角為,此人沿著南偏東方向前進10米到點,測得塔頂?shù)难鼋菫?/span>,則塔的高度為( )

A. 5米B. 10米C. 15米D. 20米

查看答案和解析>>

同步練習(xí)冊答案