(本小題滿分12分)
如圖所示,在正方體中,E是棱的中點.
(Ⅰ)求直線BE與平面所成的角的正弦值;
(Ⅱ)在棱上是否存在一點F,使平面?證明你的結(jié)論.
解法1:設(shè)正方體的棱長為1.如圖所示,以為單位正交基底建立空間直角坐標系.
(Ⅰ)依題意,
得,
所以.
在正方體中,因為,所以是平面的一個法向量,設(shè)直線BE和平面所成的角為,則
.
即直線BE和平面所成的角的正弦值為.
設(shè)F是棱上的點,則.又,所以
.而,于是
為的中點,這說明在棱上存在點F(的中點),使.[來源:ZXXK]
解法2:(Ⅰ)如圖(a)所示,取的中點M,連結(jié)EM,BM.因為E是的中點,四邊形為正方形,所以EM∥AD.
即直線BE和平面所成的角的正弦值為.
(Ⅱ)在棱上存在點F,使.
事實上,如圖(b)所示,分別取和CD的中點F,G,連結(jié).因,且,所以四邊形是平行四邊形,因此.又E,G分別為,CD的中點,所以,從而.這說明,B,G,E共面,所以.
因四邊形與皆為正方形,F(xiàn),G分別為和CD的中點,所以
,且,因此四邊形是平行四邊形,所以.而,,故.
【解析】略
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com