設(shè)x,y滿足約束條件
3x-y-2≤0
x-y≥0
x≥0,y≥0
,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為4,則a+b的值為( 。
A、4
B、2
C、
1
4
D、0
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即可確定z取最大值的條件,然后利用基本不等式進行求解.
解答: 解:作出不等式對應(yīng)的平面區(qū)域,
由z=ax+by(a>0,b>0)得y=-
a
b
x+
z
b
,
則目標(biāo)函數(shù)對應(yīng)直線的斜率-
a
b
<0

平移直線y=-
a
b
x+
z
b
,由圖象可知當(dāng)直線y=-
a
b
x+
z
b
,經(jīng)過點B時,直線y=-
a
b
x+
z
b
的截距最大,此時z最大.
3x-y-2=0
x-y=0
,解得
x=1
y=1
,
即B(1,1),
此時z的最大值為z=a+b=4,
故選:A.
點評:本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.利用平移確定目標(biāo)函數(shù)取得最優(yōu)解的條件是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若圓x2+y2=R2(R>0)和曲線
|x|
3
+
|y|
4
=1
恰有六個公共點,則R的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
2+cos2x
1+4cosx
(-
π
2
≤x≤
π
2
)
的值域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校從高一年級學(xué)生中隨機抽取部分學(xué)生,將他們的模塊測試成績分為6組:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以統(tǒng)計,得到如圖所示的頻率分布直方圖,已知高一年級共有學(xué)生600名,據(jù)此估計,該模塊測試成績不少于60分的學(xué)生人數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,x,y滿足約束條件
x≥1
x+y≤3
y≥a(x-3)
,若z=2x+y的最小值為
3
2
,則a=(  )
A、
1
4
B、
1
2
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)r是常數(shù),如果M(x0,y0)是圓x2+y2=r2外的一點,那么直線x0x+y0y=r2與圓x2+y2=r2的位置關(guān)系是( 。
A、相交B、相切
C、相離D、都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合
-1≤3x≤1
-1≤2x+1≤1
3x<2x+1
,集合B={x|p+1≤x≤2p-1},若A∩B=B,求實數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-3)2+(y-4)2=4,Q是x軸上的一點,QM、QN分別切圓C于M、N兩點,且|MN|=2
3
,則直線MN的斜率為( 。
A、0
B、
3
3
C、1
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正四面體ABCD的棱長為2,所有與它的四個頂點距離相等的平面截這個四面體所得截面的面積之和是
( 。
A、3+
3
B、4
C、3
D、
3

查看答案和解析>>

同步練習(xí)冊答案