已知a>0,x,y滿足約束條件
x≥1
x+y≤3
y≥a(x-3)
,若z=2x+y的最小值為
3
2
,則a=(  )
A、
1
4
B、
1
2
C、1
D、2
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即先確定z的最優(yōu)解,然后確定a的值即可.
解答: 解:作出不等式對應(yīng)的平面區(qū)域,(陰影部分)
由z=2x+y,得y=-2x+z,
平移直線y=-2x+z,由圖象可知當(dāng)直線y=-2x+z經(jīng)過點A時,直線y=-2x+z的截距最小,此時z最。
2x+y=
3
2
x=1
,解得
x=1
y=-
1
2
,
即A(1,-
1
2
),
∵點A也在直線y=a(x-3)上,
-
1
2
=a(1-3)=-2a
,
解得a=
1
4

故選:A.
點評:本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x,y滿足
y≤x
x+2y≤4
y≥-2
,則s=(x+1)2+(y-1)2的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓A過點P(
2
,
2
)
,且與圓B:(x+2)2+(y-2)2=r2(r>0)關(guān)于直線x-y+2=0對稱.
(1)求圓A的方程;
(2)若HE、HF是圓A的兩條切線,E、F是切點,求
HE
HF
的最小值.
(3)過平面上一點Q(x0,y0)向圓A和圓B各引一條切線,切點分別為C、D,設(shè)
|QD|
|QC|
=2
,求證:平面上存在一定點M使得Q到M的距離為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果f(n)=1+
1
2
+
1
3
+…+
1
n
+
1
n+1
…+
1
2n
(n∈N*),那么f(k+1)-f(k)共有
 
項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角梯形ABCD中,∠A=90°,∠B=30°,AB=2
3
,BC=2,點E在線段CD上,若
AE
=
AD
AB
,則μ的取值范圍是( 。
A、[0,1]
B、[0,
3
]
C、[0,
1
2
]
D、[
1
2
,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
3x-y-2≤0
x-y≥0
x≥0,y≥0
,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為4,則a+b的值為(  )
A、4
B、2
C、
1
4
D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知以點C為圓心的圓經(jīng)過點A(3,1)和B(1,3),且圓自身關(guān)于直線2x+y-3=0對稱.設(shè)直線l:y=x+m.
(1)求圓C的方程;
(2)設(shè)點Q在圓C上,若到直線l:y=x+m的距離等于1的點Q恰有4個,求m的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間[-3,3]上隨機(jī)取一個數(shù)x,使得函數(shù)f(x)=
1-x
+
x+3
-1有意義的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

|x+2|-|x-1|<a的解集為非空集合,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案