15.已知函數(shù)f(x)=ex-mx-n.
(1)求函數(shù)f(x)在[0,1]上的最小值;
(2)若方程f(x)=$\frac{1}{2}$mx2+(n-m)x-n+1的一個(gè)解為1,且該方程還在(0,1)上有解,求實(shí)數(shù)m的取值范圍.

分析 (1)求導(dǎo),再分類(lèi)討論,根據(jù)函數(shù)的單調(diào)性即可求出函數(shù)的最值,
(2)構(gòu)造函數(shù)g(x),轉(zhuǎn)化為函數(shù)g(x)在(0,1)上有零點(diǎn),根據(jù)零點(diǎn)存在定理和導(dǎo)數(shù)和與函數(shù)的關(guān)系,即可求出m的范圍.

解答 解:(1)依題意,f′(x)=ex-m,
①當(dāng)m≤0時(shí),f′(x)=ex-m>0,
∴f(x)在R上單調(diào)遞增,從而f(x)在[0,1]上單調(diào)遞增,
∴f(x)min=f(0)=1,
①當(dāng)m>0時(shí),f′(x)=ex-m>0,即x>lnm,
∴f(x)在(-∞,lnm)上單調(diào)遞減,在(lnm,+∞)上單調(diào)遞增,
當(dāng)lnm≤0,即0<m≤1,f(x)在(0,lnm)上單調(diào)遞減,
∴f(x)min=f(0)=1-n,
當(dāng)0<lnm<1,即1<m<e時(shí),
∴f(x)在(-∞,lnm)上單調(diào)遞減,在(lnm,1)上單調(diào)遞增,
∴f(x)min=f(lnm)=m-mlnm-n,
當(dāng)lnm≥1,即m≥e時(shí),f(x)在[0,1]上單調(diào)遞減,
∴f(x)min=f(1)=e-m-n
綜上所述,f(x)min=$\left\{\begin{array}{l}{1-n,(m≤1)}\\{m-mlnm-n,(1<m<e)}\\{e-m-n,(m≥e)}\end{array}\right.$
(2)g(x)=-f(x)+$\frac{1}{2}$mx2+(n-m)x-n+1=n-ex+mx+$\frac{1}{2}$mx2+(n-m)x-n-1=-ex+$\frac{1}{2}$mx2+nx+1,
問(wèn)題轉(zhuǎn)化為,
且g′(x)=n+mx-ex=-f(x),g(0)=g(1)=0,
令x0為g(x)在(0,1)內(nèi)的一個(gè)零點(diǎn),則由g(0)=g(x0)=0知,g(x)在(0,x0)內(nèi)不單調(diào)遞增,也不單調(diào)遞減,也不單調(diào)遞增,
從而-f(x)在(0,x0)內(nèi)不能恒為正,也不能恒為負(fù).
∴-f(x)在(0,x0)內(nèi)存在零點(diǎn)x1,
同理-f(x)在(x0,1)存在零點(diǎn)x2,
∴-f(x)在(0,1)內(nèi)至少有兩個(gè)零點(diǎn)x1,x2,
由(1)知,當(dāng)m≤1時(shí),-f(x)在(0,1)內(nèi)單調(diào)遞減,
∴-f(x)在(0,1)內(nèi)至多有一個(gè)零點(diǎn),不合題意,
當(dāng)1<m<e時(shí),-f(x)在(0,lnm)上單調(diào)遞增,在(lnm,1)上單調(diào)遞減,
∴x1∈(0,lnm),x2∈(lnm,1),
從而-f(0)=n-1<0,-f(1)=m+n-e<0,否則,矛盾,
∴-f(0)=n-1=e-2-$\frac{m}{2}$<0,即m>2(e-2);
-f(1)=m+n-e=$\frac{m}{2}$-1<0,即m<2,
∴2(e-2)<m<2,
當(dāng)2(e-2)<m<2時(shí),-f(x)在(0,1)的最大值為[-f(x)]max=n+mlnm-m,
若[-f(x)]max=n+mlnm-m≤0,則-f(x)≤0,x∈[0,1],
從而g(x)在[0,1]上單調(diào)遞減,這與g(0)=g(1)=0相矛盾,
∴[-f(x)]max=n+mlm-m>0,
又f(0)<0,-f(1)<0,
∴-f(x)在(0,lnm),(lnm,1)內(nèi)各有一個(gè)零點(diǎn)x1,x2
∴g(x)在(0,x1)內(nèi)單調(diào)遞減,在(x1,x2)內(nèi)單調(diào)遞增,在(x2,1)內(nèi)單調(diào)遞減,
∴g(x1)<g(0)=0,g(x2)>g(1)=0,
∴g(x)在(x1,x2)內(nèi)有零點(diǎn),
∴m的取值范圍是(2(e-2),2)

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)與函數(shù)的最值,導(dǎo)數(shù)與函數(shù)的東西,著重考查學(xué)生的推理能力,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知由實(shí)數(shù)構(gòu)成的集合A滿(mǎn)足條件:若a∈A,a≠1,則$\frac{1}{1-a}∈A$.
(1)若2∈A,則A中必還有另外兩個(gè)元素,求出這兩個(gè)元素;
(2)求證:若a∈A,a≠1,則1-$\frac{1}{a}$∈A;
(3)求證:A不可能是單元素集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)=x2-cosx,則下列不等式成立的是(  )
A.f(sin$\frac{π}{6}$)>f(cos$\frac{π}{6}$)B.f(sin$\frac{π}{3}$)>f(cos$\frac{π}{3}$)C.f(sin$\frac{2π}{3}$)>f(cos$\frac{2π}{3}$)D.f(sin$\frac{3π}{4}$)>f(cos$\frac{3π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知cosα=$\frac{\sqrt{2}}{3}$,α∈($\frac{3π}{2}$,2π),則sin($α+\frac{5π}{6}$)的值為( 。
A.$\frac{\sqrt{21}+\sqrt{2}}{6}$B.$\frac{\sqrt{21}-\sqrt{2}}{6}$C.$\frac{-\sqrt{21}+\sqrt{2}}{6}$D.$\frac{-\sqrt{21}-\sqrt{2}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知(2x+$\frac{1}{{x}^{2}}$+a)6(a∈Z)的展開(kāi)式中常數(shù)項(xiàng)為1,則(m+an)8的展開(kāi)式中含m3n5的項(xiàng)的系數(shù)為-56.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知m,n,l是三條不同直線(xiàn),α,β,γ是三個(gè)不同平面,則下列說(shuō)法正確的是( 。
A.若l∥n,n∥β,則l∥βB.若α⊥β,n∥α,m∥β,則m⊥n
C.若α⊥β,β⊥γ,則α∥γD.若l⊥α,l⊥β,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知平面向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$,滿(mǎn)足|${\overrightarrow a}$|=|${\overrightarrow b}$|=|${\overrightarrow a$-$\overrightarrow b}$|=|${\overrightarrow a$+$\overrightarrow b$-$\overrightarrow c}$|=1,則|${\overrightarrow c}$|的最大值為M=$\sqrt{3}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知圓(x-1)2+y2=R2(R>0)與橢圓$\frac{{x}^{2}}{4}$+y2=1有公共點(diǎn),求圓的半徑R的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,C,D是直徑為AB的半圓上的兩個(gè)不同的點(diǎn),AC與BD交于點(diǎn)E,點(diǎn)F在弦BD上,且△ACD∽△BCF,證明:△ABC∽△DFC.

查看答案和解析>>

同步練習(xí)冊(cè)答案