5.若復(fù)數(shù)z=(sinθ-$\frac{3}{5}$)+(cosθ-$\frac{4}{5}$)i在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)在虛軸負(fù)半軸上,則(tanθ-$\frac{π}{4}$)的值為-7.

分析 根據(jù)題意列出方程,利用同角的三角函數(shù)關(guān)系式求出sinθ、cosθ與tanθ的值,再求tan(θ-$\frac{π}{4}$)的值.

解答 解:復(fù)數(shù)z=(sinθ-$\frac{3}{5}$)+(cosθ-$\frac{4}{5}$)i在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)在虛軸負(fù)半軸上,
∴$\left\{\begin{array}{l}{sinθ-\frac{3}{5}=0}\\{cosθ-\frac{4}{5}<0}\end{array}\right.$,
解得sinθ=$\frac{3}{5}$,cosθ=-$\frac{4}{5}$,
∴tanθ=-$\frac{3}{4}$;
∴tan(θ-$\frac{π}{4}$)=$\frac{tanθ-tan\frac{π}{4}}{1+tanθtan\frac{π}{4}}$=$\frac{-\frac{3}{4}-1}{1+(-\frac{3}{4})×1}$=-7.
故答案為:-7.

點(diǎn)評(píng) 本題主要考查復(fù)數(shù)的概念與應(yīng)用問(wèn)題,也考查了復(fù)數(shù)與復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)之間的關(guān)系問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在△ABC中,內(nèi)角A、B、C的對(duì)邊分別為a、b、c,a=$\sqrt{15}$,sinA=$\frac{1}{4}$.
(1)若cosB=$\frac{{\sqrt{5}}}{3}$,求b的大;
(2)若b=4a,求c的大小及△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.如圖,已知m,n是異面直線,點(diǎn)A,B∈m,且AB=6,點(diǎn)C,D∈n,且CD=4,若M,N分別是AC,BD的中點(diǎn),MN=2$\sqrt{2}$,則m與n所成角的余弦值是$\frac{5}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知圓經(jīng)過(guò)點(diǎn)A(3,2),圓心在直線y=2x上,且與直線y=2x+5相切,求圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知$\overrightarrow{OA}$=(4,2),$\overrightarrow{OB}$=(-4,y),并且$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,則$\overrightarrow{AB}$的長(zhǎng)度為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.化簡(jiǎn):π<α<$\frac{3π}{2}$,$\frac{1+sinα}{\sqrt{1+cosα}-\sqrt{1-cosα}}$+$\frac{1-sinα}{\sqrt{1+cosα}+\sqrt{1-cosα}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.如圖,若一個(gè)圓錐的正視圖是邊長(zhǎng)為3,3,4的三角形,則該圓錐的側(cè)面積為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)f(x)=x2+4lnx,若存在滿足1≤x0≤4的實(shí)數(shù)x0,使得曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線與直線x+my-2=0垂直,則實(shí)數(shù)m的取值范圍是[4$\sqrt{2}$,9].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.如圖,圓內(nèi)接四邊形ABCD中,AB=2,BC=4,∠ABC=60° 頂點(diǎn)D在劣弧$\widehat{AC}$上運(yùn)動(dòng),則三角形ACD面積的最大值等于( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案