若函數(shù)y=log0.2(x2-2ax)的在區(qū)間(2,+∞)上單調(diào)遞減,則a的取值范圍為
 
考點(diǎn):對數(shù)函數(shù)的圖像與性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)復(fù)合函數(shù)y=log0.2(x2-2ax)的在區(qū)間(2,+∞)上單調(diào)遞減,得出條件∴
a≤2
22-2a×2>0
解得a的范圍即可.
解答: 解:∵函數(shù)y=log0.2(x2-2ax)的在區(qū)間(2,+∞)上單調(diào)遞減,
∴y=x2-2ax,區(qū)間(2,+∞)上單調(diào)遞增,
a≤2
22-2a×2>0
解得:a≤1
故答案為:a≤1.
點(diǎn)評:本題考查了復(fù)合函數(shù)的單調(diào)性的判斷,及相應(yīng)的條件,容易忽視定義域的限制.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y的取值如表所示;
x234
y645
如果y與x呈線性相關(guān),且線性回歸方程為
y
=bx+6.5則b=( 。
A、-0.5B、0.5
C、-0.2D、0.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

建造一個(gè)容積為8m3,深為2m的長方體無蓋水池,如果池底和池壁的造價(jià)每平方米分別為120元和80元.
(Ⅰ)寫出建造水池的總造價(jià)y元關(guān)于底的一邊長x米的函數(shù)解析式y(tǒng)=f(x),并求定義域.
(Ⅱ)當(dāng)?shù)走呴L為多少米時(shí)總造價(jià)最低?最低總造價(jià)為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題p:函數(shù)y=(a-1)x在R上單調(diào)遞增;命題q:當(dāng)1<x<3時(shí),關(guān)于x的不等式x2-ax+4>0恒成立.若p∨q為真命題,p∧q為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某地區(qū)的綠化面積每年平均比上一年增長10%,設(shè)經(jīng)過x年后,綠化面積與原綠化面積之比為y,則y=f(x)得圖象大致為(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=lgx+x-5的零點(diǎn)所在區(qū)間為( 。
A、(1,2)
B、(2,3)
C、(3,4)
D、(4,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中:
①23的立方根等于26的六次方根;
664
的運(yùn)算結(jié)果是±2;
③根式
366-x
在實(shí)數(shù)范圍內(nèi)是沒有意義的;
④根式
na
(n為正奇數(shù))與根式
mam
(m為正整數(shù))中,a的取值范圍都是全體實(shí)數(shù);
⑤不存在實(shí)數(shù)a,使得根式
a
+
4-a
在實(shí)數(shù)范圍內(nèi)有意義.
其中正確的個(gè)數(shù)有(  )
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算或花間下列各式:
(1)2log510+log50.25
(2)(2a
2
3
b
1
2
)(-6a
1
2
b
1
3
)÷(-3a
1
6
b
5
6
)(a>0,b>0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

備受矚目的巴西世界杯正在如火如荼的進(jìn)行,為確?倹Q賽的順利進(jìn)行,組委會決定在位于里約熱內(nèi)盧的馬拉卡納體育場外臨時(shí)圍建一個(gè)矩形觀眾候場區(qū),總面積為72m2(如圖所示).要求矩形場地的一面利用體育場的外墻,其余三面用鐵欄桿圍,并且要在體育館外墻對面留一個(gè)長度為2m的入口.現(xiàn)已知鐵欄桿的租用費(fèi)用為100元/m.設(shè)該矩形區(qū)域的長為x(單位:m),租用鐵欄桿的總費(fèi)用為y(單位:元)
(Ⅰ)將y表示為x的函數(shù);
(Ⅱ)試確定x,使得租用此區(qū)域所用鐵欄桿所需費(fèi)用最小,并求出最小最小費(fèi)用.

查看答案和解析>>

同步練習(xí)冊答案