【題目】已知直線的方程為,點是拋物線上到直線距離最小的點,點是拋物線上異于點的點,直線與直線交于點,過點與軸平行的直線與拋物線交于點.
(Ⅰ)求點的坐標(biāo);
(Ⅱ)證明直線恒過定點,并求這個定點的坐標(biāo).
【答案】(Ⅰ)(Ⅱ)
【解析】
試題分析:(Ⅰ)到直線距離最小的點,可根據(jù)點到直線距離公式,取最小值時的點;也可根據(jù)幾何意義得為與直線平行且與拋物線相切的切點:如根據(jù)點到直線的距離
得當(dāng)且僅當(dāng)時取最小值,(Ⅱ)解析幾何中定點問題的解決方法,為以算代證,即先求出直線AB方程,根據(jù)恒等關(guān)系求定點.先設(shè)點 ,求出直線AP方程,與直線方程聯(lián)立,解出點縱坐標(biāo)為.即得點的坐標(biāo)為,再根據(jù)兩點式求出直線AB方程,最后根據(jù)方程對應(yīng)恒成立得定點
試題解析:(Ⅰ)設(shè)點的坐標(biāo)為,則,
所以,點到直線的距離
.
當(dāng)且僅當(dāng)時等號成立,此時點坐標(biāo)為.………………………………4分
(Ⅱ)設(shè)點的坐標(biāo)為,顯然.
當(dāng)時,點坐標(biāo)為,直線的方程為;
當(dāng)時,直線的方程為,
化簡得;
綜上,直線的方程為.
與直線的方程聯(lián)立,可得點的縱坐標(biāo)為.
因為,軸,所以點的縱坐標(biāo)為.
因此,點的坐標(biāo)為.
當(dāng),即時,直線的斜率.
所以直線的方程為,
整理得.
當(dāng),時,上式對任意恒成立,
此時,直線恒過定點,
當(dāng)時,直線的方程為,仍過定點,
故符合題意的直線恒過定點.……………………………………13分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)設(shè),是曲線圖象上的兩個相異的點,若直線的斜率恒成立,求實數(shù)的取值范圍.
(3)設(shè)函數(shù)有兩個極值點,且,若恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若存在極值點,且,其中,求證: ;
(Ⅲ)設(shè),函數(shù),求證: 在區(qū)間上最大值不小于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程.
已知曲線的參數(shù)方程為(為參數(shù)),以直角坐標(biāo)系原點為極點,軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程;
(2)若直線的極坐標(biāo)方程為,求直線被曲線截得的弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在上有最大值1和最小值0,設(shè).
(1)求的值;
(2)若不等式在上有解,求實數(shù)的取值范圍;
(3)若方程 (為自然對數(shù)的底數(shù))有三個不同的實數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,摩天輪的半徑為米,點距地面高度為米,摩天輪做勻速運動,每分鐘轉(zhuǎn)一圈,以點為原點,過點且平行與地平線的直線為軸建立平面直角坐標(biāo)系,設(shè)點的起始位置在最低點(且在最低點開始時),設(shè)在時刻(分鐘)時點距地面的高度(米),則與的函數(shù)關(guān)系式
__________.在摩天輪旋轉(zhuǎn)一周內(nèi),點到地面的距離不小于米的時間長度為 __________(分鐘)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有10道題,其中6道甲類題,4道乙類題,小明同學(xué)從中任取3道題解答.
(Ⅰ)求小明同學(xué)至少取到1道乙類題的概率;
(Ⅱ)已知所取的3道題中有2道甲類題,1道乙類題.若小明同學(xué)答對每道甲類題的概率都是,答對每道乙類題的概率都是,且各題答對與否相互獨立.求小明同學(xué)至少答對2道題的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】班主任為了對本班學(xué)生的考試成績進(jìn)行分析,決定從全班名男同學(xué), 名女同學(xué)中隨機抽取一個容量為的樣本進(jìn)行分析.
(1)如果按性別比例分層抽樣,可以得到多少個不同的樣本?(只要求寫出計算式即可,不必計算出結(jié)果)
(2)隨機抽取位,他們的數(shù)學(xué)分?jǐn)?shù)從小到大排序是: ,物理分?jǐn)?shù)從小到大排序是: .
①若規(guī)定分以上(包括分)為優(yōu)秀,求這位同學(xué)中恰有位同學(xué)的數(shù)學(xué)和物理分?jǐn)?shù)均為優(yōu)秀的概率;
②若這位同學(xué)的數(shù)學(xué)、物理分?jǐn)?shù)事實上對應(yīng)如下表:
根據(jù)上表數(shù)據(jù),由變量與的相關(guān)系數(shù)可知物理成績與數(shù)學(xué)成績之間具有較強的線性相關(guān)關(guān)系,現(xiàn)求與的線性回歸方程(系數(shù)精確到).
參考公式:回歸直線的方程是: ,其中對應(yīng)的回歸估計值,
參考數(shù)據(jù): , , ,, ,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)若,討論當(dāng)時的零點的個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com