【題目】已知函數(shù)上有最大值1和最小值0,設(shè).

(1)求的值;

(2)若不等式上有解,求實(shí)數(shù)的取值范圍;

(3)若方程 (為自然對(duì)數(shù)的底數(shù))有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

【答案】(1) 的值分別為1、0.(2) .(3) .

【解析】試題分析:

(1)由題意得到關(guān)于實(shí)數(shù)m,n的方程組,求解方程組可得的值分別為1、0.

(2)由題意換元,令,結(jié)合換元之后的不等式的解集可得實(shí)數(shù)的取值范圍是.

(3),原問(wèn)題等價(jià)于,求解不等式組可得實(shí)數(shù)的取值范圍是.

試題解析:

(1),當(dāng)時(shí), 上是增函數(shù),∴,

,解得,

當(dāng)時(shí), ,無(wú)最大值和最小值;

當(dāng)時(shí), 上是減函數(shù),∴,即,解得,

,∴舍去.

綜上, 的值分別為1、0.

(2)由(1)知,∴上有解等價(jià)于

上有解,

上有解,令,則

,∴,記,∵,∴,

的取值范圍為.

(3)原方程可化為,令,則,

由題意知有兩個(gè)不同的實(shí)數(shù)解,

其中 , ,

,則.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍,右焦點(diǎn)為,點(diǎn)分別是該橢圓的上、下頂點(diǎn),點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn)(與軸交點(diǎn)除外),直線交橢圓于另一點(diǎn),記直線, 的斜率分別為

(1)當(dāng)直線過(guò)點(diǎn)時(shí),求的值;

(2)求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位從一所學(xué)校招收某類特殊人才,對(duì)20位已經(jīng)選拔入圍的學(xué)生進(jìn)行運(yùn)動(dòng)協(xié)調(diào)能力和邏輯思維能力的測(cè)試,其測(cè)試結(jié)果如下表:

例如表中運(yùn)動(dòng)協(xié)調(diào)能力良好且邏輯思維能力一般的學(xué)生是4人,由于部分?jǐn)?shù)據(jù)丟失,只知道從這20位參加測(cè)試的學(xué)生中隨機(jī)抽取一位,抽到邏輯思維能力優(yōu)秀的學(xué)生的概率為

(1)求、的值;

(2)從運(yùn)動(dòng)協(xié)調(diào)能力為優(yōu)秀的學(xué)生中任意抽取2位,求其中至少有一位邏輯思維能力優(yōu)秀的學(xué)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線

,過(guò)點(diǎn)的直線交曲線兩點(diǎn),且,求直線的方程;

若曲線表示圓,且直線與圓交于兩點(diǎn),是否存在實(shí)數(shù),使得以為直徑的圓過(guò)原點(diǎn),若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,是等邊三角形,是等腰直角三角形,,平面平面,平面,點(diǎn)的中點(diǎn),連接.

(1)求證:平面;

(2),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線方程為,點(diǎn)拋物線到直線距離最小點(diǎn),點(diǎn)拋物線上異于點(diǎn)點(diǎn),直線直線于點(diǎn),過(guò)點(diǎn)平行的直線與拋物線于點(diǎn).

點(diǎn)坐標(biāo);

)證明直線過(guò)定點(diǎn),并求這個(gè)定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)為2的正方形,點(diǎn)分別中點(diǎn),將分別沿,起,使兩點(diǎn)重合于.

求證;

求四棱體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)甲、乙、丙三個(gè)乒乓球協(xié)會(huì)的運(yùn)動(dòng)員人數(shù)分別為27,9,18,先采用分層抽樣的方法從這三個(gè)協(xié)會(huì)中抽取6名運(yùn)動(dòng)員參加比賽.

)求應(yīng)從這三個(gè)協(xié)會(huì)中分別抽取的運(yùn)動(dòng)員人數(shù);

)將抽取的6名運(yùn)動(dòng)員進(jìn)行編號(hào),編號(hào)分別為,從這6名運(yùn)動(dòng)員中隨機(jī)抽取2名參加雙打比賽.

)用所給編號(hào)列出所有可能的結(jié)果;

)設(shè)為事件編號(hào)為的兩名運(yùn)動(dòng)員至少有一人被抽到,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

(Ⅰ)求曲線在點(diǎn)處的切線方程;

(Ⅱ)對(duì)恒成立,求實(shí)數(shù)的取值范圍;

(Ⅲ)求整數(shù)的值,使函數(shù)在區(qū)間上有零點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案