下列函數(shù)中,既是偶函數(shù),又在區(qū)間(1,2)內(nèi)是增函數(shù)的為(  )
A、y=|log2x|
B、y=log2|x|
C、y=
ex-e-x
2
D、y=x3+1
考點(diǎn):奇偶性與單調(diào)性的綜合
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用函數(shù)奇偶性的定義可排除A,C,D,從而可得答案.
解答: 解:對(duì)于A,定義域?yàn)椋?,+∞),不是偶函數(shù),故排除,
對(duì)于B,令y=f(x)=log2|x|,x∈R且x≠0,同理可證f(x)為偶函數(shù),
當(dāng)x∈(1,2)時(shí),y=f(x)=log2|x|=log2x,為增函數(shù),故B滿足題意;
對(duì)于C,令y=f(x)=
ex-e-x
2
,f(-x)=-f(x),為奇函數(shù),故可排除C;
而D,為非奇非偶函數(shù),可排除D;
故選B.
點(diǎn)評(píng):本題考查函數(shù)奇偶性的判斷與單調(diào)性的判斷,著重考查函數(shù)奇偶性與單調(diào)性的定義,考查“排除法”在解題中的作用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是R上的奇函數(shù),且f(x+4)=f(x),當(dāng)x∈(-2,0)時(shí),f(x)=2x,則f(2012)-f(2011)( 。
A、-
1
2
B、
1
2
C、-2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓臺(tái)的母線與軸的夾角為30°,母線長(zhǎng)為2,一個(gè)底面的半徑是另一個(gè)底面半徑的2倍,則兩底面面積之和為( 。
A、πB、3πC、5πD、7π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

交于一點(diǎn)的三條直線可以確定平面的個(gè)數(shù)是( 。
A、三個(gè)B、兩個(gè)
C、一個(gè)或兩個(gè)D、一個(gè)或三個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

作曲線y=e2x在點(diǎn)(0,1)處的切線,則切線的斜率是( 。
A、1B、2
C、eD、e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:x=1是方程x+1=0的根;q:對(duì)于任意x∈R,總有|x|≥0,則下列命題為真命題的是( 。
A、p∧qB、¬p∧¬q
C、p∧¬qD、¬p∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
x+1,(0≤x<1)
log2x+1.5,(x≥1)
,存在x2>x1≥0使得f(x1)=f(x2),則x1•f(x2)的取值范圍( 。
A、[
3
4
,2)
B、[
3
2
,2)
C、[
3
4
,
4
3
D、[
2
3
,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,向量
BC
=
a
,向量
CA
=
b
,向量
AB
=
c
.|
a
|=3,|
b
|=3,|
c
|=5,則
a
b
+
a
c
+
b
c
=( 。
A、-
43
2
B、22
C、-22
D、
13
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=2|x|,x∈R
(1)作出其圖象;
(2)說(shuō)出其單調(diào)減區(qū)間、奇偶性、最大值、最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案