【題目】已知函數(shù)f(x)=lnx﹣ (m∈R)在區(qū)間[1,e]取得最小值4,則m=

【答案】﹣3e
【解析】解:函數(shù) 的定義域?yàn)椋?,+∞),

當(dāng)f′(x)=0時(shí), ,此時(shí)x=﹣m,如果m≥0,則無(wú)解.
所以,當(dāng)m≥0時(shí),f′(x)>0,f(x)為增函數(shù),所以f(x)min=f(1)=﹣m=4,m=﹣4,矛盾舍去;
當(dāng)m<0時(shí),
若x∈(0,﹣m),f′(x)<0,f(x)為減函數(shù),若x∈(﹣m,+∞),f′(x)>0,f(x)為增函數(shù),
所以f(﹣m)=ln(﹣m)+1為極小值,也是最小值;
①當(dāng)﹣m<1,即﹣1<m<0時(shí),f(x)在[1,e]上單調(diào)遞增,所以f(x)min=f(1)=﹣m=4,所以m=﹣4(矛盾);
②當(dāng)﹣m>e,即m<﹣e時(shí),f(x)在[1,e]上單調(diào)遞減,f(x)min=f(e)=1﹣ =4.所以m=﹣3e.
③當(dāng)﹣1≤﹣m≤e,即﹣e≤m≤1時(shí),f(x)在[1,e]上的最小值為f(﹣m)=ln(﹣m)+1=4.此時(shí)m=﹣e3<﹣e(矛盾).
綜上m=﹣3e.
求出函數(shù)的導(dǎo)函數(shù),然后分m的范圍討論函數(shù)的單調(diào)性,根據(jù)函數(shù)的單調(diào)性求出函數(shù)的最小值,利用最小值等于4求m的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知常數(shù),在數(shù)列中,首項(xiàng)是其前項(xiàng)和,且.

1)設(shè),,證明數(shù)列是等比數(shù)列,并求出的通項(xiàng)公式;

2)設(shè),證明數(shù)列是等差數(shù)列,并求出的通項(xiàng)公式;

3)若當(dāng)且僅當(dāng)時(shí),數(shù)列取到最小值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分10分)選修44,坐標(biāo)系與參數(shù)方程

已知曲線,直線為參數(shù)).

I)寫(xiě)出曲線的參數(shù)方程,直線的普通方程;

II)過(guò)曲線上任意一點(diǎn)作與夾角為的直線,交于點(diǎn),的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年俄羅斯世界杯激戰(zhàn)正酣,某校工會(huì)對(duì)全校教職工在世界杯期間每天收看比賽的時(shí)間作了一次調(diào)查,得到如下頻數(shù)分布表:

收看時(shí)間

(單位:小時(shí))

14

28

20

12

(1)若將每天收看比賽轉(zhuǎn)播時(shí)間不低于3小時(shí)的教職工定義為球迷,否則定義為非球迷,請(qǐng)根據(jù)頻數(shù)分布表補(bǔ)全列聯(lián)表:

合計(jì)

球迷

40

非球迷

合計(jì)

并判斷能否有90%的把握認(rèn)為該校教職工是否為球迷性別有關(guān);

(2)在全校球迷中按性別分層抽樣抽取6名,再?gòu)倪@6球迷中選取2名世界杯知識(shí)講座.記其中女職工的人數(shù)為,求的分布列與數(shù)學(xué)期望.

附表及公式:

0.15

0.10

0.05

0.025

2.072

2.706

3.841

5.024

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù),則下列說(shuō)法不正確的是( )

A.其圖象開(kāi)口向上,且始終與軸有兩個(gè)不同的交點(diǎn)

B.無(wú)論取何實(shí)數(shù),其圖象始終過(guò)定點(diǎn)

C.其圖象對(duì)稱(chēng)軸的位置沒(méi)有確定,但其形狀不會(huì)因的取值不同而改變

D.函數(shù)的最小值大于

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某群體的人均通勤時(shí)間,是指單日內(nèi)該群體中成員從居住地到工作地的平均用時(shí).某地上班族中的成員僅以自駕或公交方式通勤.分析顯示:當(dāng))的成員自駕時(shí),自駕群體的人均通勤時(shí)間為(單位:分鐘),而公交群體的人均通勤時(shí)間不受影響,恒為分鐘,試根據(jù)上述分析結(jié)果回答下列問(wèn)題:

(1)當(dāng)在什么范圍內(nèi)時(shí),公交群體的人均通勤時(shí)間少于自駕群體的人均通勤時(shí)間?

(2)求該地上班族的人均通勤時(shí)間的表達(dá)式;討論的單調(diào)性,并說(shuō)明其實(shí)際意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校在2 015年11月份的高三期中考試后,隨機(jī)地抽取了50名學(xué)生的數(shù)學(xué)成績(jī)并進(jìn)行了分析,結(jié)果這50名同學(xué)的成績(jī)?nèi)拷橛?0分到140分之間.現(xiàn)將結(jié)果按如下方式分為6組,第一組[80,90),第二組[90,100),…第六組[130,140],得到如圖所示的頻率分布直方圖.

(1)試估計(jì)該校數(shù)學(xué)的平均成績(jī)(同一組中的數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表);
(2)這50名學(xué)生中成績(jī)?cè)?20分以上的同學(xué)中任意抽取3人,該3人在130分(含130分)以上的人數(shù)記為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率,該橢圓中心到直線的距離為.

(1)求橢圓的方程;

(2)是否存在過(guò)點(diǎn)的直線,使直線與橢圓交于,兩點(diǎn),且以為直徑的圓過(guò)定點(diǎn)?若存在,求出所有符合條件的直線方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案