A. | [$\frac{65}{9}$,25] | B. | [$\frac{36}{5}$,25] | C. | [16,25] | D. | [9,25] |
分析 由約束條件作出可行域,再由x2+(y+2)2的幾何意義,即可行域內(nèi)的動(dòng)點(diǎn)與定點(diǎn)(0,-2)距離的平方求解.
解答 解:由約束條件$\left\{\begin{array}{l}x-2y-2≥0\\ 2x+y-4≥0\\ x-y-3≤0\end{array}\right.$作出可行域如圖,
聯(lián)立$\left\{\begin{array}{l}{x-y-3=0}\\{2x+y-4=0}\end{array}\right.$,解得B($\frac{7}{3},-\frac{2}{3}$),
聯(lián)立$\left\{\begin{array}{l}{x-2y-2=0}\\{x-y-3=0}\end{array}\right.$,解得C(4,1),
由圖可知,點(diǎn)(0,-2)與可行域內(nèi)點(diǎn)B($\frac{7}{3},-\frac{2}{3}$)的距離的平方最小為$(\frac{7}{3})^{2}+(-\frac{2}{3}+2)^{2}=\frac{65}{9}$;
點(diǎn)(0,-2)與可行域內(nèi)點(diǎn)C(4,1)的距離的平方最大為42+(-2-1)2=25.
∴x2+(y+2)2的取值范圍是[$\frac{65}{9}$,25].
故選:A.
點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法與數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 3 | C. | $2\sqrt{3}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 10 | B. | $\sqrt{10}$ | C. | 4 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若f(3)≥9成立,則對(duì)于任意k∈N*,均有f(k)≥k2成立 | |
B. | 若f(3)≥9成立,則對(duì)于任意k≥3,k∈N*,均有f(k)<k2成立 | |
C. | 若f(3)≥9成立,則對(duì)于任意k<3,k∈N*,均有f(k)<k2成立 | |
D. | 若f(3)=9成立,則對(duì)于任意k≥3,k∈N*,均有f(k)≥k2成立 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com