已知圓臺的上下底面半徑分別是2、5,且側(cè)面面積等于兩底面面積之和,求該圓臺的母線長( 。
A、
29
7
B、
21
7
C、29
D、
25
4
考點:旋轉(zhuǎn)體(圓柱、圓錐、圓臺)
專題:計算題,空間位置關(guān)系與距離
分析:求出圓臺的上底面面積,下底面面積,寫出側(cè)面積表達式,利用側(cè)面面積等于兩底面面積之和,求出圓臺的母線長.
解答: 解:設(shè)圓臺的母線長為l,
則圓臺的上底面面積為S=π•22=4π,
圓臺的下底面面積為S=π•52=25π,
所以圓臺的底面面積為S=S+S=29π
又圓臺的側(cè)面積S側(cè)=π(2+5)l=7πl(wèi),
于是7πl(wèi)=29π,即l=
29
7

故選:A.
點評:本題考查旋轉(zhuǎn)體(圓柱、圓錐、圓臺),棱柱、棱錐、棱臺的側(cè)面積和表面積,考查計算能力,是基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知全集U={x|-10<x<10,x∈Z},又集合A={x∈N*|x2-7x≤18},集合B={4,6,8,9},則集合A∩(∁UB)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義運算
.
a
c
b
d
.
=ad-bc,若函數(shù)f(x)=
.
x-1
-x
2
x+3
.
在[-4,m]上單調(diào)遞減,則實數(shù)m的取值范圍( 。
A、[-2,+∞)
B、(-∞,-2]
C、[-4,-2]
D、(-4,-2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為響應國家擴大內(nèi)需的政策,某廠家擬在2014年舉行促銷活動,經(jīng)調(diào)查測算,該產(chǎn)品的年銷量(即該廠的年產(chǎn)量)x萬件與年促銷費用t(t≥0)萬元滿足x=7-
k
t+1
(k為常數(shù)).如果不搞促銷活動,則該產(chǎn)品的年銷量只能是1萬件.已知2014年生產(chǎn)該產(chǎn)品的固定投入為6萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入12萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分).
(1)將該廠家2014年該產(chǎn)品的利潤y萬元表示為年促銷費用t萬元的函數(shù);并求年促銷費用投入多少萬元時,廠家利潤最大?
(2)若規(guī)定年促銷費用不能超過2萬元,則年產(chǎn)量為多少時,廠家利潤最大?最大利潤為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2-(6a+2)x+3在[2,+∞)單調(diào)遞減,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某學生邀請10位同學中的6位參加一項活動,其中兩位同學要么都請,要么都不請,共有
 
 邀請方案.(用數(shù)字回答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知焦點在y軸上的橢圓
x2
10
+
y2
m
=1的長軸長為8,則m等于( 。
A、4B、6C、16D、18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)由“a,b,c∈R,則(ab)c=a(bc)”類比“若
a
、
b
、
c
為三個向量,則(
a
b
)
c
=
a
(
b
c
)

(2)在數(shù)列{an}中,a1=0,an+1=2an+2,猜想an=2n-2.
上述兩個推理中,得出的結(jié)論正確的是
 
..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=(a-1)(ax-a-x)(a>0且a≠1)在R上是增函數(shù),則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習冊答案