【題目】定義集合A={x|2x≥1},B={y|y= },則A∩RB=(
A.(1,+∞)
B.[0,1]
C.[0,1)
D.[1,+∞)

【答案】A
【解析】解:A={x|2x≥1}={x|x≥0}=[0,+∞),
B={y|y= }={y|0≤y≤1}=[0,1],
RB=(﹣∞,0)∪(1,+∞),
即A∩RB=(1,+∞),
故選:A
【考點精析】本題主要考查了交、并、補集的混合運算的相關知識點,需要掌握求集合的并、交、補是集合間的基本運算,運算結果仍然還是集合,區(qū)分交集與并集的關鍵是“且”與“或”,在處理有關交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設條件,結合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結合的思想方法才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某賓館有相同標準的床位100張,根據(jù)經(jīng)驗,當該賓館的床價(即每張床每天的租金)不超過10元時,床位可以全部租出,當床價高于10元時,每提高1元,將有3張床位空閑.為了獲得較好的效益,該賓館要給床位定一個合適的價格,條件是:要方便結賬,床價應為1元的整數(shù)倍;該賓館每日的費用支出為575元,床位出租的收入必須高于支出,而且高出得越多越好.若用x表示床價,用y表示該賓館一天出租床位的凈收入(即除去每日的費用支出后的收入).

(1)把y表示成x的函數(shù),并求出其定義域;

(2)試確定該賓館將床位定價為多少時,既符合上面的兩個條件,又能使凈收入最多?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設S,T是R的兩個非空子集,如果存在一個從S到T的函數(shù)y=f(x)滿足:(i)T={f(x)|x∈S};(ii)對任意x1 , x2∈S,當x1<x2時,恒有f(x1)<f(x2),那么稱這兩個集合“保序同構”,以下集合對不是“保序同構”的是(
A.A=N* , B=N
B.A={x|﹣1≤x≤3},B={x|x=﹣8或0<x≤10}
C.A={x|0<x<1},B=R
D.A=Z,B=Q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】知集合A={ x|x2﹣1=0 },B={ x|ax﹣1=0 },A∪B=A,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋擲一枚質地均勻的硬幣,正面朝上的概率為.現(xiàn)采用隨機模擬試驗的方法估計拋擲這枚硬幣三次恰有兩次正面朝上的概率:先由計算器產(chǎn)生0或1的隨機數(shù),用0表示正面朝上,用1表示反面朝上;再以每三個隨機數(shù)做為一組,代表這三次投擲的結果.經(jīng)隨機模擬試驗產(chǎn)生了如下20組隨機數(shù):

101 111 010 101 010 100 100 011 111 110

000 011 010 001 111 011 100 000 101 101

據(jù)此估計,拋擲這枚硬幣三次恰有兩次正面朝上的概率為( )

A. B C D

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=﹣x3+ax2﹣4在x=2處取得極值,若m,n∈[0,1],則f'(n)+f(m)的最大值是(
A.﹣9
B.﹣1
C.1
D.﹣4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某品牌手機公司生產(chǎn)某款手機的年固定成本為40萬美元,每生產(chǎn)1萬部還需另投入16萬美元.設公司一年內共生產(chǎn)該款手機x萬部并全部銷售完,每萬部的銷售收入為R(x)萬美元,且R(x)=
(1)寫出年利潤f(x)(萬美元)關于年產(chǎn)量x(萬部)的函數(shù)解析式;
(2)當年產(chǎn)量為多少萬部時,公司在該款手機的生產(chǎn)中所獲得的利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)設函數(shù).

(Ⅰ)討論函數(shù)的單調性;

(Ⅱ)當函數(shù)有最大值且最大值大于時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),其中.

(1)討論函數(shù)極值點的個數(shù),并說明理由;

(2)若成立,求的取值范圍.

查看答案和解析>>

同步練習冊答案