【題目】設(shè)函數(shù),其中.

(1)討論函數(shù)極值點的個數(shù),并說明理由;

(2)若成立,求的取值范圍.

【答案】)當時,函數(shù)上有唯一極值點;

時,函數(shù)上無極值點;

時,函數(shù)上有兩個極值點;

的取值范圍是.

【解析】試題分析:()先求,令

通過對的取值的討論,結(jié)合二次函數(shù)的知識,由導數(shù)的符號得到函數(shù)的單調(diào)區(qū)間;()根據(jù)(1)的結(jié)果這一特殊性,通過對參數(shù)的討論確定的取值范圍.

試題解析:函數(shù)的定義域為

1)當時, , 上恒成立

所以,函數(shù)上單調(diào)遞增無極值;

2)當時,

時, ,

所以, ,函數(shù)上單調(diào)遞增無極值;

時,

設(shè)方程的兩根為

因為

所以,

可得:

所以,當時, ,函數(shù)單調(diào)遞增;

時, ,函數(shù)單調(diào)遞減;

時, ,函數(shù)單調(diào)遞增;

因此函數(shù)有兩個極值點.

3)當時,

可得:

時, ,函數(shù)單調(diào)遞增;

時, ,函數(shù)單調(diào)遞減;

因此函數(shù)有一個極值點.

綜上:

時,函數(shù)上有唯一極值點;

時,函數(shù)上無極值點;

時,函數(shù)上有兩個極值點;

)由()知,

1)當時,函數(shù)上單調(diào)遞增,

因為

所以, 時, ,符合題意;

2)當時,由,得

所以,函數(shù)上單調(diào)遞增,

,所以, 時, ,符合題意;

3)當時,由,可得

所以時,函數(shù)單調(diào)遞減;

所以,當時, 不符合題意;

4)當時,設(shè)

因為時,

所以上單調(diào)遞增,

因此當時,

即:

可得:

時,

此時, 不合題意.

綜上所述, 的取值范圍是

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】定義集合A={x|2x≥1},B={y|y= },則A∩RB=(
A.(1,+∞)
B.[0,1]
C.[0,1)
D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)

已知函數(shù),函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若不等式上恒成立,求實數(shù)a的取值范圍;

(Ⅲ)若,求證:不等式: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】抽樣調(diào)查某大型機器設(shè)備使用年限x和該年支出維修費用y(萬元),得到數(shù)據(jù)如表

使用年限x

2

3

4

5

6

維修費用y

2.2

3.8

5.5

6.5

7.0

部分數(shù)據(jù)分析如下 =25, yi=112.3, =90
參考公式:線性回歸直線方程為
(1)求線性回歸方程;
(2)由(1)中結(jié)論預測第10年所支出的維修費用.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知p:x∈R,2x>m(x2+1),q:x0∈R,x02+2x0﹣m﹣1=0,
(1)若q是真命題,求m的范圍;
(2)若p∧(¬q)為真,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】天水市第一次聯(lián)考后,某校對甲、乙兩個文科班的數(shù)學考試成績進行分析,

規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計成績后,

得到如下的列聯(lián)表,且已知在甲、乙兩個文科班全部110人中隨機抽取1人為優(yōu)秀的概率為.

優(yōu)秀

非優(yōu)秀

合計

甲班

10

乙班

30

合計

110

(1)請完成上面的列聯(lián)表;

(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認為成績與班級有關(guān)系;

(3)若按下面的方法從甲班優(yōu)秀的學生中抽取一人:把甲班優(yōu)秀的10名學生從2到11進行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數(shù)之和為被抽取人的序號。試求抽到9號或10號的概率。

參考公式與臨界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)0<a<1,定義a1=1+a, , 求證:對任意n∈N , 有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)都滿足,設(shè)函數(shù) ).

(Ⅰ)求的表達式;

(Ⅱ)若,使成立,求實數(shù)m的取值范圍;

(Ⅲ)設(shè), ,求證:對于

恒有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班20名同學某次數(shù)學測試的成績可繪制成如圖莖葉圖.由于其中部分數(shù)據(jù)缺失,故打算根據(jù)莖葉圖中的數(shù)據(jù)估計全班同學的平均成績.

(1)完成頻率分布直方圖;

(2)根據(jù)(1)中的頻率分布直方圖估計全班同學的平均成績(同一組中的數(shù)據(jù)用改組區(qū)間的中點值作代表);

(3)根據(jù)莖葉圖計算出的全班的平均成績?yōu)?/span>,并假設(shè),且取得每一個可能值的機會相等,在(2)的條件下,求概率.

查看答案和解析>>

同步練習冊答案