20.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.6π+1B.$\frac{{({24+\sqrt{2}})π}}{4}+1$C.$\frac{{({23+\sqrt{2}})π}}{4}+\frac{1}{2}$D.$\frac{{({23+\sqrt{2}})π}}{4}+1$

分析 由題意,幾何體為圓柱與圓錐$\frac{1}{4}$的組合體,即可求出該幾何體的表面積.

解答 解:由題意,幾何體為圓柱與圓錐$\frac{1}{4}$的組合體,
該幾何體的表面積為2π•1•2+π•12+$\frac{3}{4}π•{1}^{2}$+$\frac{1}{2}×\frac{2π}{4}×\sqrt{2}$+1=$\frac{(23+\sqrt{2})π}{4}+1$,
故選D.

點(diǎn)評(píng) 本題考查三視圖,考查學(xué)生的計(jì)算能力,確定幾何體的形狀是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知a>0且a≠1,設(shè)命題p:函數(shù)y=loga(x+1)在區(qū)間(-1,+∞)內(nèi)單調(diào)遞減;q:曲線y=x2+(2a-3)x+1與x軸有兩個(gè)不同的交點(diǎn).如果p或q為真命題,那么a的取值集合是怎樣的呢?并寫出求解過(guò)程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.函數(shù)y=3-2sinx的單調(diào)遞增區(qū)間為[$\frac{π}{2}$+2kπ,$\frac{3π}{2}$+2kπ](k∈z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知函數(shù)$f(x)=1+x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+…+\frac{{{x^{2013}}}}{2013}$,$g(x)=1-x+\frac{x^2}{2}-\frac{x^3}{3}+\frac{x^4}{4}+…$$-\frac{{{x^{2013}}}}{2013}$,設(shè)函數(shù)F(x)=f(x+1)•g(x-1),且函數(shù)F(x)的零點(diǎn)均在區(qū)間[a,b](a<b,a,b∈Z)內(nèi),則b-a的最小值為(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在如圖所示的空間幾何體中,邊長(zhǎng)為2的正三角形ABC所在平面與正三角形ABE所在平面互相垂直,DE在平面ABE內(nèi)的射影為∠AEB的平分線且DE與平面AEB所成的角為60°,DE=2.
(Ⅰ)求證:CD⊥平面ABC;
(Ⅱ)求二面角A-BE-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.連續(xù)擲兩次骰子,以先后看到的點(diǎn)數(shù)m,n作為點(diǎn)P的坐標(biāo)(m,n),那么點(diǎn)P在圓x2+y2=17內(nèi)部(不包括邊界)的概率是$\frac{2}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知向量$\overrightarrow m=(f(x),2cosx),\;\;\overrightarrow n=(sinx+cosx,1)$且$\overrightarrow m\;\;∥\;\;\overrightarrow n$.
(1)求函數(shù)f(x)的解析式.
(2)若函數(shù)f(x)的圖象向下方平移1個(gè)單位,然后保持縱坐標(biāo)不變,橫坐標(biāo)縮小到原來(lái)的一半,得到函數(shù)g(x)的圖象.求函數(shù)g(x)在$x∈[0,\frac{π}{8}]$上的最大值及相應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.函數(shù)f(x)=x2-x-2的零點(diǎn)是2或-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.在${({x-\frac{1}{x}-1})^4}$的展開式中,常數(shù)項(xiàng)為-5.

查看答案和解析>>

同步練習(xí)冊(cè)答案