A. | f(3)<g(0)<f(4) | B. | g(0)<f(4)<f(3) | C. | g(0)<f(3)<f(4) | D. | f(3)<f(4)<g(0) |
分析 由條件利用函數(shù)的奇偶性求出函數(shù)f(x)和g(x)的解析式,從而求得g(0)、f(3)、f(4)的大小關(guān)系.
解答 解:函數(shù)f(x),g(x)分別是R上的奇函數(shù)、偶函數(shù),且滿足f(x)+g(x)=2x ①,
∴f(-x)+g(-x)=2-x,即-f(x)+g(x)=2-x ②,
由①②求得f(x)=$\frac{{2}^{x}{-2}^{-x}}{2}$,g(x)=$\frac{{2}^{x}{+2}^{-x}}{2}$,
∴g(0)=1,f(3)=$\frac{63}{16}$,f(4)=8-$\frac{1}{32}$,∴g(0)<f(3)<f(4),
故選:C.
點評 本題主要考查利用函數(shù)的奇偶性求函數(shù)的解析式,求函數(shù)的值,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=x2+2x,x∈(-1,+∞) | B. | f(x)=x2-1,x∈(-1,+∞) | ||
C. | f(x)=x2+2x,x∈(-∞,-1) | D. | f(x)=x2-1,x∈(-∞,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f($\sqrt{2}$)>f(-$\sqrt{2}$) | B. | f(-2)>f(3) | C. | f(3)<f(4) | D. | f($\sqrt{2}$)>f($\sqrt{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com