分析 要使f(x)有意義,則$\frac{lnx}{2-x}$≥0,即$\left\{\begin{array}{l}{lnx≥0}\\{2-x>0}\end{array}\right.$或$\left\{\begin{array}{l}{lnx<0}\\{2-x<0}\end{array}\right.$,解得即可.
解答 解:要使f(x)有意義,
則$\frac{lnx}{2-x}$≥0,即$\left\{\begin{array}{l}{lnx≥0}\\{2-x>0}\end{array}\right.$或$\left\{\begin{array}{l}{lnx<0}\\{2-x<0}\end{array}\right.$,
即$\left\{\begin{array}{l}{x≥1}\\{x<2}\end{array}\right.$或$\left\{\begin{array}{l}{0<x<1}\\{x<2}\end{array}\right.$,
解得1≤x<2或0<x<1,
即0<x<2,
故函數(shù)的定義域為(0,2),
故答案為:(0,2).
點評 本題考查函數(shù)的定義域的求法以及不等式組的解法,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)f(x)在$[-\frac{π}{2},\frac{π}{2}]$上單調(diào)遞增 | B. | 函數(shù)f(x)的值域是[-1,1] | ||
C. | ?x0∈R,f(-x0)≠-f(x0) | D. | ?x∈R,f(-x)≠f(x) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com