【題目】我們國家正處于老齡化社會(huì)中,老有所依也是政府的民生工程.某市共有戶籍人口400萬,其中老人(年齡60歲及以上)人數(shù)約有66萬,為了解老人們的健康狀況,政府從 老人中隨機(jī)抽取600人并委托醫(yī)療機(jī)構(gòu)免費(fèi)為他們進(jìn)行健康評(píng)估,健康狀況共分為不能 自理、不健康尚能自理、基本健康、健康四個(gè)等級(jí),并以80歲為界限分成兩個(gè)群體進(jìn)行 統(tǒng)計(jì),樣本分布被制作成如圖表:
(1)若采取分層抽樣的方法再從樣本中的不能自理的老人中抽取16人進(jìn)一步了解他們的生活狀況,則兩個(gè)群體中各應(yīng)抽取多少人?
(2)估算該市80歲及以上長(zhǎng)者占全市戶籍人口的百分比;
(3)據(jù)統(tǒng)計(jì)該市大約有五分之一的戶籍老人無固定收入,政府計(jì)劃為這部分老人每月發(fā) 放生活補(bǔ)貼,標(biāo)準(zhǔn)如下:①80歲及以上長(zhǎng)者每人每月發(fā)放生活補(bǔ)貼200元;②80歲以下 老人每人每月發(fā)放生活補(bǔ)貼120元;③不能自理的老人每人每月額外發(fā)放生活補(bǔ)貼100 元.試估計(jì)政府執(zhí)行此計(jì)劃的年度預(yù)算.
【答案】
(1)解:數(shù)據(jù)整理如下表:
健康狀況 | 健康 | 基本健康 | 不健康尚能自理 | 不能自理 |
80歲及以上 | 20 | 45 | 20 | 15 |
80歲以下 | 200 | 225 | 50 | 25 |
從圖表中知不能自理的80歲及以上長(zhǎng)者占比為: = ,
故抽取16人中不能自理的80歲及以上長(zhǎng)者人數(shù)為16× =6.80歲以下長(zhǎng)者人數(shù)為10人
(2)解:在600人中80歲及以上長(zhǎng)者在老人中占比為: = ,
用樣本估計(jì)總體,80歲及以上長(zhǎng)者共有 萬,
80歲及以上長(zhǎng)者占戶籍人口的百分比為 100%=2.75%
(3)解:用樣本估計(jì)總體,設(shè)任一戶籍老人每月享受的生活補(bǔ)助為X元,
P(X=0)= ,P(X=120)= × = ,P(X=200)= = ,
P(X=220)= = ,P(X=300)= = ,
則隨機(jī)變量X的分布列為:
X | 0 | 120 | 220 | 300 | |
P |
EX=0× +120× +200× +220× +300× =28,
全市老人的總預(yù)算為28×12×66×104=2.2176×108元.
政府執(zhí)行此計(jì)劃的年度預(yù)算約為2.2176億元
【解析】(1)數(shù)據(jù)整理如下表:
健康狀況 | 健康 | 基本健康 | 不健康尚能自理 | 不能自理 |
80歲及以上 | 20 | 45 | 20 | 15 |
80歲以下 | 200 | 225 | 50 | 25 |
利用頻率計(jì)算公式即可得出.(2)在600人中80歲及以上長(zhǎng)者在老人中占比為: ,用樣本估計(jì)總體,80歲及以上長(zhǎng)者共有 萬,即可得出80歲及以上長(zhǎng)者占戶籍人口的百分比.(3)用樣本估計(jì)總體,設(shè)任一戶籍老人每月享受的生活補(bǔ)助為X元,P(X=0)= ,P(X=120)= × ,P(X=200)= ,P(X=220)= ,P(X=300)= ,及其數(shù)學(xué)期望.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足,且.
(Ⅰ)證明:數(shù)列為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
(Ⅱ)若記為滿足不等式的正整數(shù)的個(gè)數(shù),設(shè),求數(shù)列的最大項(xiàng)與最小項(xiàng)的值.
【答案】(1)見解析;(2)最大項(xiàng)為,最小項(xiàng)為.
【解析】試題分析:(Ⅰ)對(duì)兩邊取倒數(shù),移項(xiàng)即可得出,故而數(shù)列為等差數(shù)列,利用等差數(shù)列的通項(xiàng)公式求出,從而可得出;(Ⅱ)根據(jù)不等式,,得,又,從而,當(dāng)為奇數(shù)時(shí),單調(diào)遞減,;當(dāng)為偶數(shù)時(shí)單調(diào)遞增,綜上的最大項(xiàng)為,最小項(xiàng)為.
試題解析:(Ⅰ)由于,,則
∴,則,即為常數(shù)
又,∴數(shù)列是以1為首項(xiàng),為公比的等比數(shù)列
從而,即.
(Ⅱ)由即,得,
又,從而
故
當(dāng)為奇數(shù)時(shí),,單調(diào)遞減,;
當(dāng)為偶數(shù)時(shí),,單調(diào)遞增,
綜上的最大項(xiàng)為,最小項(xiàng)為.
【題型】解答題
【結(jié)束】
22
【題目】已知向量, ,若函數(shù)的最小正周期為,且在區(qū)間上單調(diào)遞減.
(Ⅰ)求的解析式;
(Ⅱ)若關(guān)于的方程在有實(shí)數(shù)解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρ=4cosθ,直線l的參數(shù)方程為 (t為參數(shù)).
(1)求曲線C1的直角坐標(biāo)方程及直線l的普通方程;
(2)若曲線C2的參數(shù)方程為 (α為參數(shù)),曲線C1上點(diǎn)P的極角為 ,Q為曲線C2上的動(dòng)點(diǎn),求PQ的中點(diǎn)M到直線l距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直三棱柱ABC﹣A1B1C1的底面為正三角形,E,F(xiàn)分別是A1C1 , B1C1上的點(diǎn),且滿足A1E=EC1 , B1F=3FC1 .
(1)求證:平面AEF⊥平面BB1C1C;
(2)設(shè)直三棱柱ABC﹣A1B1C1的棱長(zhǎng)均相等,求二面角C1﹣AE﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線C1 (t為參數(shù)),C2 (θ為參數(shù)),
(Ⅰ)當(dāng)α= 時(shí),求C1與C2的交點(diǎn)坐標(biāo);
(Ⅱ)過坐標(biāo)原點(diǎn)O做C1的垂線,垂足為A,P為OA中點(diǎn),當(dāng)α變化時(shí),求P點(diǎn)的軌跡的參數(shù)方程,并指出它是什么曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 :方程 有兩個(gè)不等的正根; :方程 表示焦點(diǎn)在 軸上的雙曲線.
(1)若 為真命題,求實(shí)數(shù) 的取值范圍;
(2)若“ 或 ”為真,“ 且 ”為假,求實(shí)數(shù) 的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和滿足 .
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足,
(I)求數(shù)列的前項(xiàng)和;
(II)求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在對(duì)人們的休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運(yùn)動(dòng);男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運(yùn)動(dòng).
(1)根據(jù)以上數(shù)據(jù)建立一個(gè) 列聯(lián)表;
(2)判斷性別與休閑方式是否有關(guān)系.
0.05 | 0.025 | 0.010 | |
3.841 | 5.024 | 6.635 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com