15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}+1,x<1}\\{{x}^{2}+ax,x>1}\end{array}\right.$,若f(f(0))=4a,則實數(shù)a等于( 。
A.$\frac{1}{2}$B.$\frac{4}{5}$C.2D.9

分析 先計算f(0)=2,再得出f(2)=4+2a,得出方程解出a.

解答 解:f(0)=2,
∴f(f(0))=f(2)=4+2a,
∴4+2a=4a,解得a=2.
故選C.

點(diǎn)評 本題考查了分段函數(shù)的函數(shù)值計算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.x2(1+$\frac{2}{x}$)5展開式中的常數(shù)項是40.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知定義在R上的函數(shù)f(x)對任意實數(shù)x滿足f(x+2)=f(x),f(2-x)=f(x),且當(dāng)x∈[0,1]時,f(x)=x2+1,則方程$f(x)=\frac{1}{2}|x|$的解的個數(shù)為( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.$\overrightarrow{AB}+\overrightarrow{BD}-\overrightarrow{AC}$=( 。
A.$\overrightarrow{AC}$B.$\overrightarrow{CD}$C.$\overrightarrow{AB}$D.$\overrightarrow{DB}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)m∈N*,且m<25,則(20-m)(21-m)…(26-m)等于( 。
A.$A_{26-m}^7$B.$C_{26-m}^7$C.$A_{20-m}^7$D.$A_{26-m}^6$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列說法不正確的是( 。
A.若“p∧q”為假,則p,q至少有一個是假命題
B.命題“?x∈R,x2-x-1<0”的否定是“?x∈R,x2-x-1≥0”
C.設(shè)A,B是兩個集合,則“A⊆B”是“A∩B=A”的充分不必要條件
D.當(dāng)α<0時,冪函數(shù)y=xα在(0,+∞)上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,角A,B,C的對邊分別為a,b,c,且a=2,$cosC=-\frac{1}{4}$.
(Ⅰ)如果b=3,求c的值;
(Ⅱ)如果$c=2\sqrt{6}$,求sinB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知對?x∈(0,+∞),不等式2ax>ex-1恒成立,則實數(shù)a的最小值是( 。
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦點(diǎn)F(1,0),過點(diǎn)F的直線l與橢圓交于C,D兩點(diǎn),且點(diǎn)C到焦點(diǎn)的最大距離與最小距離之比為3.
(Ⅰ)求橢圓的方程;
(Ⅱ)若CD與x軸垂直.A、B是橢圓上位于直線CD兩側(cè)的動點(diǎn),滿足∠ACD=∠BCD,則直線AB的斜率是否為定值?若是,請求出該定值,若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案