1.在△ABC中,已知tan$\frac{A+B}{2}$=sinC,給出以下四個(gè)結(jié)論①②③④,其中正確的是②④(寫(xiě)出所有正確結(jié)論的序號(hào)).
①$\frac{tanA}{tanB}$=2;②1<sinA+sinB≤$\sqrt{2}$;③sin2A+cos2B=1;④cos2A+cos2B=sin2C.

分析 先利用同角三角函數(shù)的基本關(guān)系和二倍角公式化簡(jiǎn)整理題設(shè)等式求得cos$\frac{A+B}{2}$=$\frac{\sqrt{2}}{2}$,進(jìn)而求得A+B=90°進(jìn)而求得①tanA•cotB=tanA•tanA=2等式不一定成立,排除;②利用兩角和公式化簡(jiǎn),利用正弦函數(shù)的性質(zhì)求得其范圍符合,②正確;③sin2A+cos2B=2sin2A不一定等于1,排除③;④利用同角三角函數(shù)的基本關(guān)系可知cos2A+cos2B=cos2A+sin2A=1,進(jìn)而根據(jù)C=90°可知sinC=1,進(jìn)而可知二者相等.④正確.

解答 解:∵tan$\frac{A+B}{2}$=sinC,
∴$\frac{sin\frac{A+B}{2}}{cos\frac{A+B}{2}}$=2sin$\frac{A+B}{2}$cos$\frac{A+B}{2}$,
整理求得cos(A+B)=0,
∴A+B=90°.
∴$\frac{tanA}{tanB}$=tanA•cotB=tanA•tanA不一定等于2,①不正確.
∴sinA+sinB=sinA+cosA=$\sqrt{2}$sin(A+45°),
45°<A+45°<135°,$\frac{\sqrt{2}}{2}$<sin(A+45°)≤1,
∴1<sinA+sinB≤$\sqrt{2}$,
所以②正確;
cos2A+cos2B=cos2A+sin2A=1,
sin2C=sin290°=1,
所以cos2A+cos2B=sin2C.
所以④正確.
sin2A+cos2B=sin2A+sin2A=2sin2A=1不一定成立,故③不正確.
綜上知②④正確
故答案為:②④.

點(diǎn)評(píng) 本題主要考查了三角函數(shù)的化簡(jiǎn)求值.考查了學(xué)生綜合分析問(wèn)題和推理的能力,考查了運(yùn)算能力和轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.將1、2、3、…9這九個(gè)數(shù)字填在如圖所示的9個(gè)空格中,要求每一行從左到右依次增大,每一列從上到下依次增大,當(dāng)6在圖中的位置時(shí),則填寫(xiě)空格的方法有( 。
A.8種B.18種C.12種D.24種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.函數(shù)f(x)=x2-2ax+3在區(qū)間[1,3]上的最大值g(a)=$\left\{\begin{array}{l}{12-6a,(a≤\frac{3}{2})}\\{4-2a,(a>\frac{3}{2})}\end{array}\right.$..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)等差數(shù)列{an}的公差為d(d≠0),已知它的前10項(xiàng)和為110,且a1,a2,a4成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.不等式x2<x+6的解集為( 。
A.{x|x<-2或x>3}B.{x|x<-2}C.{x|-2<x<3}D.{x|x>3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),且當(dāng)x∈[-1,0]時(shí),f(x)=-x,則f(2011)=( 。
A.1B.0C.2010D.2011

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)函數(shù)f(x)=x3-4x.
(1)判斷函數(shù)f(x)的奇偶性,并求f(x)的減區(qū)間;
(2)設(shè)x1,x2分別是函數(shù)f(x)的最小零點(diǎn)和最大零點(diǎn),求函數(shù)f(x)在區(qū)間[x1,x2]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知$\frac{4sinα+2cosα}{5cosα+3sinα}$=2.
(1)求tan(90°+α)的值;
(2)求sin2α-sinαcosα-2cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在數(shù)列{an}中,Sn是它的前n項(xiàng)和,a1=2,且Sn+1=4an+2(n∈N*).
(Ⅰ)求a2和a3的值;
(Ⅱ)設(shè)bn=an+1-2an,求證:數(shù)列{bn}是等比數(shù)列;
(Ⅲ)若${c}_{n}=\frac{2n-1}{_{n}}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案