14.3141與1278的最大公約數(shù)為9.

分析 利用輾轉(zhuǎn)相除法即可得出.

解答 解:3141=1278×2+585,
1278=585×2+108,
585=108×5+45,
108=45×2+18,
45=18×2+9,
18=9×2,
3141與1278的最大公約數(shù)為9.
故答案為:9.

點(diǎn)評(píng) 本題考查了輾轉(zhuǎn)相除法的應(yīng)用,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知△ABC的重心為O,過O任做一直線分別交邊AB,AC于P,Q兩點(diǎn),設(shè)$\overrightarrow{AP}=m\overrightarrow{AB},\overrightarrow{AQ}=n\overrightarrow{AC}$,則4m+9n的最小值是$\frac{25}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列向量與向量$\overrightarrow{a}$=(-3,4)垂直,且是單位向量的為( 。
A.(-4,3)B.(-3,-4)C.(-$\frac{4}{5}$,$\frac{3}{5}$)D.(-$\frac{4}{5}$,-$\frac{3}{5}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在平面直角坐標(biāo)系中,以x軸的非負(fù)半軸為角的始邊,如果角α,β的終邊分別與單位圓交于點(diǎn)($\frac{12}{13}$,$\frac{5}{13}$)和(-$\frac{3}{5}$,$\frac{4}{5}$),那么cosαsinβ等于( 。
A.-$\frac{36}{65}$B.-$\frac{3}{13}$C.$\frac{4}{13}$D.$\frac{48}{65}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖流程圖表示的算法是(  )
A.輸出c,b,aB.輸出最大值C.輸出最小值D.比較a,b,c大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.《孫子算經(jīng)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,其中一個(gè)問題的解答可以用如圖的算法來實(shí)現(xiàn),若輸出的a,b分別為17,23,則輸入的S,T分別為( 。
A.S=40,T=120B.S=40,T=126C.S=42,T=126D.S=42,T=130

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.從一副撲克牌(52張)中任抽一張,設(shè)A=“抽得老K”,B=“抽得紅牌”,C=“抽到J”,判斷下列每對(duì)事件是否相互獨(dú)立?是否互斥?是否對(duì)立?為什么?
(1)A與B;
(2)C與A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在平面直角坐標(biāo)系xOy中,已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距F1F2的長為2,經(jīng)過第二象限內(nèi)一點(diǎn)P(m,n)的直線$\frac{mx}{{a}^{2}}$+$\frac{ny}{^{2}}$=1與圓x2+y2=a2交于A,B兩點(diǎn),且OA=$\sqrt{2}$.
(1)求PF1+PF2的值;
(2)若$\overrightarrow{AB}$•$\overrightarrow{{F}_{1}{F}_{2}}$=$\frac{8}{3}$,求m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列函數(shù)中,其定義域和值域分別與函數(shù)y=10lgx的定義域和值域相同的是( 。
A.y=xB.y=lgxC.y=2xD.y=$\frac{1}{\sqrt{x}}$

查看答案和解析>>

同步練習(xí)冊(cè)答案