(10分)已知函數(shù),設為的導數(shù),
(1)求的值;
(2)證明:對任意,等式都成立.
(1);(2)證明見解析.
解析試題分析:(1)本題首先考查復合函數(shù)的求導,如;
(2)要找到式子的規(guī)律,當然主要是找式子的規(guī)律,為了達到此目標,我們讓看看有什么特點,由(1),對這個式子兩邊求導可得,再求導,由引可歸納出,從上面過程還可看出應該用數(shù)學歸納法證明這個結(jié)論.
試題解析:(1)由已知,
,
所以,,
故.
(2)由(1)得,
兩邊求導可得,
類似可得,
下面我們用數(shù)學歸納法證明對一切都成立,
(1)時命題已經(jīng)成立,
(2)假設時,命題成立,即,
對此式兩邊求導可得,
即,因此時命題也成立.
綜合(1)(2)等式對一切都成立.
令,得,
所以.
【考點】復合函數(shù)的導數(shù),數(shù)學歸納法.
科目:高中數(shù)學 來源: 題型:解答題
已知的圖像過原點,且在點處的切線與軸平行,對任意,都有.
(1)求函數(shù)在點處切線的斜率;
(2)求的解析式;
(3)設,對任意,都有.求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知,.
(1)若的單調(diào)減區(qū)間是,求實數(shù)a的值;
(2)若對于定義域內(nèi)的任意x恒成立,求實數(shù)a的取值范圍;
(3)設有兩個極值點, 且.若恒成立,求m的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)。
(1)若的單調(diào)減區(qū)間是,求實數(shù)a的值;
(2)若函數(shù)在區(qū)間上都為單調(diào)函數(shù)且它們的單調(diào)性相同,求實數(shù)a的取值范圍;
(3)a、b是函數(shù)的兩個極值點,a<b,。求證:對任意的,不等式成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知x=-是函數(shù)f(x)=ln(x+1)-x+x2的一個極值點。
(1)求a的值;
(2)求曲線y=f(x)在點(1,f(1))處的切線方程
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù).
(1)當(為自然對數(shù)的底數(shù))時,求的最小值;
(2)討論函數(shù)零點的個數(shù);
(3)若對任意恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)(為常數(shù)).
(1)若是函數(shù)的一個極值點,求的值;
(2)當時,試判斷的單調(diào)性;
(3)若對任意的,使不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com