若對任意實(shí)數(shù)x有|x-3|-|x-1|≤a恒成立,則實(shí)數(shù)a的取值范圍是
 
考點(diǎn):絕對值不等式的解法
專題:不等式的解法及應(yīng)用
分析:根據(jù)絕對值的意義求得|x-3|-|x-1|的最大值為2,再結(jié)合題題求得實(shí)數(shù)a的取值范圍.
解答: 解:由于|x-3|-|x-1|表示數(shù)軸上的x對應(yīng)點(diǎn)到3對應(yīng)點(diǎn)的距離減去它到1對應(yīng)點(diǎn)的距離,
故|x-3|-|x-1|的最大值為2.
再根據(jù)對任意實(shí)數(shù)x有|x-3|-|x-1|≤a恒成立,可得a≥2,
故答案為:[2,+∞).
點(diǎn)評:本題主要考查絕對值的意義,絕對值不等式的解法,函數(shù)的恒成立問題,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3x,(x≤1)
log
1
3
x,(x>1)
,則y=f(2-x)的大致圖象是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1-x)2(1+y)3的展開式中xy2的系數(shù)是( 。
A、-6B、-3C、3D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某中學(xué)從高三甲、乙兩個班中各選出7名學(xué)生參加數(shù)學(xué)競賽,他們?nèi)〉玫某煽儯M分100分)的莖葉圖如圖,其中甲班學(xué)生成績的眾數(shù)是83,乙班學(xué)生成績的中位數(shù)是86,則x+y的值為(  )
A、7B、8C、9D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校一個班中有20名男生和18名女生,從這38名學(xué)生中任選4名去參加一個周末“英語Party”.
(1)若選出的4名學(xué)生中恰有2名女生,則共有多少種不同的選法?
(2)若選出的4名學(xué)生中至多有2名女生,則共有多少種不同的選法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知凼數(shù)f(x)=2
3
sinxcosx-sin2x+
1
2
cos2x+
1
2
,x∈R,求函數(shù)f(x)在[-
π
4
,
π
2
]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某考察團(tuán)對10個城市的職工人均工資x(千元)與居民人均消費(fèi)y(千元)進(jìn)行調(diào)查統(tǒng)計(jì),得出y與x具有相關(guān)關(guān)系,且回歸方程為
?
y
=0.6x+1.2.若某城市職工人均工資為5千元,估計(jì)該城市人均消費(fèi)額占人均工資收入的百分比為( 。
A、66%B、67%
C、79%D、84%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1-tan2x
1+tan2x
的最小正周期是( 。
A、
π
4
B、
π
2
C、π
D、2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a+b=1,對?a,b∈(0,+∞),
1
a
+
4
b
≥|2x-1|-|x+1|恒成立,
(Ⅰ)求
1
a
+
4
b
的最小值;
(Ⅱ)求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案