過點(diǎn)(1,1)作函數(shù)y=x3的圖像的切線,切線方程是________

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直角坐標(biāo)平面中,過點(diǎn)A1(1,0)作函數(shù)f(x)=x2(x>0)的切線l1,其切點(diǎn)為B1(x1,y1);過點(diǎn)A2(x1,0)作函數(shù)g(x)=ex(x>0)的切線l2,其切點(diǎn)為B2(x2,y2);過點(diǎn)A3(x2,0)作函數(shù)f(x)=x2(x>0)的切線l3,其切點(diǎn)為B3(x3,y3);如此下去,即過點(diǎn)A2k-2(x2k-2,0)作函數(shù)f(x)=x2(x>0)的切線l2k-1,其切點(diǎn)為B2k-1(x2k-1,y2k-1);過點(diǎn)A2k-1(x2k-1,0)作函數(shù)g(x)=ex(x>0)的切線l2k,其切點(diǎn)為B2k(x2k,y2k);….
(1)求x2k-2與x2k-1及x2k-1與x2k的關(guān)系;
(2)求數(shù)列{xn}通項(xiàng)公式xn;
(3)是否存在實(shí)數(shù)t,使得對(duì)于任意的自然數(shù)n,不等式
1
x2+1
+
2
x4+1
+
3
x6+1
+…+
n
x2n+1
+1
≤t-
6
t
恒成立?若存在,求出這樣的實(shí)數(shù)t的取值范圍;若不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年黑龍江省雙鴨山一中高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=exsinx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)如果對(duì)于任意的x∈[0,],f(x)≥kx總成立,求實(shí)數(shù)k的取值范圍;
(3)設(shè)函數(shù)F(x)=f(x)+excosx,x∈[,].過點(diǎn)M()作函數(shù)F(x)圖象的所有切線,令各切點(diǎn)的橫坐標(biāo)構(gòu)成數(shù)列{xn},求數(shù)列{xn}的所有項(xiàng)之和S的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省湛江師范附中高考復(fù)習(xí)數(shù)學(xué)模擬試卷2(理科)(解析版) 題型:解答題

(1)若任意直線l過點(diǎn)F(0,1),且與函數(shù)f(x)=的圖象C交于兩個(gè)不同的點(diǎn)A,B,分別過點(diǎn)A,B作C的切線,兩切線交于點(diǎn)M,證明:點(diǎn)M的縱坐標(biāo)是一個(gè)定值,并求出這個(gè)定值;
(2)若不等式f(x)≥g(x)恒成立,g(x)=alnx(a>o)求實(shí)數(shù)a的取值范圍;
(3)求證:,(其中e為無理數(shù),約為2.71828).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三第五次階段考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知點(diǎn)),過點(diǎn)作拋物線的切線,切點(diǎn)分別為、(其中).

(Ⅰ)若,求的值;

(Ⅱ)在(Ⅰ)的條件下,若以點(diǎn)為圓心的圓與直線相切,求圓的方程;

(Ⅲ)若直線的方程是,且以點(diǎn)為圓心的圓與直線相切,

求圓面積的最小值.

【解析】本試題主要考查了拋物線的的方程以及性質(zhì)的運(yùn)用。直線與圓的位置關(guān)系的運(yùn)用。

中∵直線與曲線相切,且過點(diǎn),∴,利用求根公式得到結(jié)論先求直線的方程,再利用點(diǎn)P到直線的距離為半徑,從而得到圓的方程。

(3)∵直線的方程是,,且以點(diǎn)為圓心的圓與直線相切∴點(diǎn)到直線的距離即為圓的半徑,即,借助于函數(shù)的性質(zhì)圓面積的最小值

(Ⅰ)由可得,.  ------1分

∵直線與曲線相切,且過點(diǎn),∴,即,

,或, --------------------3分

同理可得:,或----------------4分

,∴,. -----------------5分

(Ⅱ)由(Ⅰ)知,,,則的斜率,

∴直線的方程為:,又,

,即. -----------------7分

∵點(diǎn)到直線的距離即為圓的半徑,即,--------------8分

故圓的面積為. --------------------9分

(Ⅲ)∵直線的方程是,,且以點(diǎn)為圓心的圓與直線相切∴點(diǎn)到直線的距離即為圓的半徑,即,    ………10分

,

當(dāng)且僅當(dāng),即,時(shí)取等號(hào).

故圓面積的最小值

 

查看答案和解析>>

同步練習(xí)冊(cè)答案