3.關(guān)于x的方程x3-3x2-a=0有三個(gè)不同的實(shí)數(shù)解,則a的取值范圍是(  )
A.(-4,0)B.(0,4)C.[0,+∞)D.(-∞,4]

分析 構(gòu)造f(x)=x3-3x2-a,則f′(x)=3x2-6x=3x(x-2),可知f(0)=-a為極大值,f(2)=-4-a為極小值,從而當(dāng)極大值大于0,極小值小于0時(shí),有三個(gè)不等實(shí)根,由此可得a的取值范圍.

解答 解:設(shè)f(x)=x3-3x2-a,
由題意知使函數(shù)f(x)=x3-3x2-a的極大值大于0且極小值小于0即可,
則f′(x)=3x2-6x=3x(x-2),
∴函數(shù)在(-∞,0),(2,+∞)上單調(diào)增,在(0,2)上單調(diào)減,
∴f(0)=-a為極大值,f(2)=-4-a為極小值,
當(dāng)f(0)>0,f(2)<0時(shí),即-a>0,-4-a<0,即-4<a<0時(shí),有三個(gè)不等實(shí)根,
故答案為:(-4,0).

點(diǎn)評(píng) 本題以方程為載體,考查方程根的問題,考查函數(shù)與方程的聯(lián)系,解題的關(guān)鍵是構(gòu)造函數(shù),利用導(dǎo)數(shù)求函數(shù)的極值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)A是由有限個(gè)正整數(shù)組成的集合,若存在兩個(gè)集合B,C滿足:①B∩C=∅;
②B∪C=A;③B的元素之和等于C的元素之和,則稱集合A“可均分”.
(1)證明:集合A={1,2,3,4,5,6,7,8}“可均分”;
(2)證明:集合A={2015+1,2015+2,…,2015+93}“可均分”;
(3)求出所有的正整數(shù)k,使得A={2015+1,2015+2,…,2015+k}“可均分”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知點(diǎn)$D(1,\sqrt{2})$在雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\;(a>0,b>0)$上,且雙曲線的一條漸近線的方程是$\sqrt{3}x+y=0$.(1)求雙曲線C的方程;
(2)過點(diǎn)(0,1)且斜率為k的直線l與雙曲線C交于A、B兩個(gè)不同點(diǎn),若以線段AB為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn),求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+1,}&{x≤-1}\\{{x}^{2},}&{-1<x<2}\\{2x,}&{x≥2}\end{array}\right.$
(1)若f(a)=3,求實(shí)數(shù)a的值.
(2)分別寫出函數(shù)f(x)的單調(diào)遞增區(qū)間和單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)$y=\left\{\begin{array}{l}{(x+2)^2},x<0\\ 4,x=0\\{(x-2)^2},x>0\end{array}\right.$,請(qǐng)畫出一種程序框圖,要求輸入自變量x的值,輸出函數(shù)值y.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={x||x-2|≥1},B={x|x>2},則A∩B=(  )
A.{x|2<x≤3}B.{x|1≤x<2}C.{x|x>2}D.{x|x≥3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在二項(xiàng)式(2x-1)5的展開式中,含x3的項(xiàng)的系數(shù)是(  )
A.40B.-40C.80D.-80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某電視臺(tái)推出某種游戲節(jié)目,規(guī)則如下:選手面對(duì)1-8號(hào)8扇大門,依次按響門上的門鈴,門鈴會(huì)播放一段流行歌曲,選手需正確回答出這首歌的名字,方可獲得該扇門對(duì)應(yīng)的家庭夢(mèng)想基金.在一次場(chǎng)外調(diào)査中,得到如下2x2列聯(lián)表
正誤
年齡
正確錯(cuò)誤合計(jì)
[20,30)103040
[30,40]107080
合計(jì)20100120

P(K2<k00.100.050.0100.005
k02.7063.8416.6357.879
(Ⅰ)判斷是否有90%的把握認(rèn)為猜對(duì)歌曲名稱與年齡有關(guān),說明你的理由;
(Ⅱ)若在這次場(chǎng)外調(diào)査中按年齡段用分層抽樣的方法選取6名選手,并從中抽取兩名幸運(yùn)選手,求兩名幸運(yùn)選手不在同一年齡段的概率.(視頻率為概率)
(參考公式:其中K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知曲線C1的極坐標(biāo)方程為:ρ=6sinθ-8cosθ,曲線C2的參數(shù)方程為:$\left\{\begin{array}{l}{x=8cosφ}\\{y=3sinφ}\end{array}\right.$(φ為參數(shù)).
(1)化C1,C2為直角坐標(biāo)方程,并說明它們分別表示什么曲線;
(2)已知曲線C1上的點(diǎn)P(ρ,$\frac{π}{2}$),Q為曲線C2上一動(dòng)點(diǎn),求PQ的中點(diǎn)M到直線l:$\left\{\begin{array}{l}{x=3+2t}\\{y=-2+t}\end{array}\right.$(t為參數(shù))的距離的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案