A. | B2=AC | B. | A+C=2B | C. | B(B-A)=A(C-A) | D. | B(B-A)=C(C-A) |
分析 討論公比是否是1,從而分別求A,B,C,從而判斷選項(xiàng)是否成立即可.
解答 解:若公比q=1,則B,C成立;
故排除A,D;
若公比q≠1,
則A=Sn=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$,B=S2n=$\frac{{a}_{1}(1-{q}^{2n})}{1-q}$,C=S3n=$\frac{{a}_{1}(1-{q}^{3n})}{1-q}$,
B(B-A)=$\frac{{a}_{1}(1-{q}^{2n})}{1-q}$($\frac{{a}_{1}(1-{q}^{2n})}{1-q}$-$\frac{{a}_{1}(1-{q}^{n})}{1-q}$)=$\frac{{{a}_{1}}^{2}{q}^{n}}{(1-q)^{2}}$(1-qn)(1-qn)(1+qn)
A(C-A)=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$($\frac{{a}_{1}(1-{q}^{3n})}{1-q}$-$\frac{{a}_{1}(1-{q}^{n})}{1-q}$)=$\frac{{{a}_{1}}^{2}{q}^{n}}{(1-q)^{2}}$(1-qn)(1-qn)(1+qn);
故B(B-A)=A(C-A);
故選:C.
點(diǎn)評(píng) 本題考查了等比數(shù)列的性質(zhì)的判斷與應(yīng)用,同時(shí)考查了分類討論及學(xué)生的化簡運(yùn)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|0<x≤1} | B. | {x|-1≤x<0} | C. | {x|0≤x≤2} | D. | {x|0≤x≤1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({-\frac{1}{4},2}]$ | B. | $[{-\frac{1}{4},2})$ | C. | $[{-2,\frac{1}{4}})$ | D. | $({-2,\frac{1}{4}}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若x=y,則$\frac{1}{x}$=$\frac{1}{y}$ | B. | 若x2=1,則x=1 | C. | 若$\sqrt{x}$=$\sqrt{y}$,則x=y | D. | 若x<y,則x2<y2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com