5.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,過F2作y軸的平行線交橢圓于M、N兩點(diǎn),若|MN|=3,且$\overrightarrow{{F_1}M}•\overrightarrow{{F_1}N}=\frac{7}{4}$,求橢圓方程.

分析 由題意求出M、N的坐標(biāo),求得|MN|,再求得$\overrightarrow{{F}_{1}M}、\overrightarrow{{F}_{1}N}$的坐標(biāo),結(jié)合$\overrightarrow{{F_1}M}•\overrightarrow{{F_1}N}=\frac{7}{4}$列方程組求得a,b的值,則橢圓方程可求.

解答 解:令x=c,代入橢圓方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,解得$y=±\frac{b^2}{a}$,
∴M,N的坐標(biāo)分別是$({c,\frac{b^2}{a}}),({c,-\frac{b^2}{a}})$,
∴$|{MN}|=\frac{{2{b^2}}}{a}$=3,①
$\overrightarrow{{F_1}M}=(2c,\frac{b^2}{a})$,$\overrightarrow{{F_1}N}=(2c,-\frac{b^2}{a})$,則$\overrightarrow{{F_1}M}•\overrightarrow{{F_1}N}=4{c^2}-\frac{b^4}{a^2}=\frac{7}{4}$.②
聯(lián)立①②,解得a=2,$b=\sqrt{3}$,
∴所求橢圓方程為$\frac{x^2}{4}+\frac{y^2}{3}=1$.

點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì),考查了平面向量在解圓錐曲線問題中的應(yīng)用,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=x2+2mx+3是偶函數(shù),則實(shí)數(shù)m的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)f(x)=$\frac{{2}^{x}-1}{\sqrt{lo{g}_{\frac{1}{2}}(3-2x)+1}}$的定義域是($\frac{1}{2}$,$\frac{3}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.以下四個(gè)命題中,正確的有(  )
①兩個(gè)底面平行且相似,其余各面都是梯形的多面體是棱臺(tái);
②有兩個(gè)面平行,其余各面都是平行四邊形的幾何體叫做棱柱;
③在圓臺(tái)上、下兩底面的圓周上各取一點(diǎn),則這兩點(diǎn)的連線是圓臺(tái)的母線;
④一個(gè)棱錐的各條棱長(zhǎng)都相等,那么這個(gè)棱錐一定不是六棱錐.
A.①②④B.②③C.D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知f(x)的定義域?yàn)椋?,+∞),若對(duì)任意x1>0,x2>0,均有f(x1+x2)=f(x1)+f(x2),
且f(8)=3,則f(2)=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)y=2x2-x4的極小值是0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=|$\frac{1}{3}$x-lnx|,若關(guān)于x的方程f(x)=mx有4個(gè)不同的解,則實(shí)數(shù)m的取值范圍為(0,$\frac{1}{e}$-$\frac{1}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在三棱錐P-ABC中,PA⊥平面ABC,AB⊥AC.
(Ⅰ)求證:AC⊥PB;
(Ⅱ)若AB=AC=AP=2,設(shè)D,E分別為棱AC,AP的中點(diǎn),F(xiàn)為△ABD內(nèi)一點(diǎn),且滿足$\overrightarrow{DF}=\frac{1}{3}(\overrightarrow{DA}+\overrightarrow{DB})$,求直線BD與EF所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知P(x,y)在不等式$\left\{\begin{array}{l}2x+y≥4\\ x-y≥0\\ x-2y≤2\end{array}\right.$所確定的平面區(qū)域內(nèi),則z=3x-y的最小值為(  )
A.$\frac{8}{3}$B.$\frac{4}{3}$C.$\frac{2}{3}$D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案