2.已知不等式ax2-bx+2<0的解集為{x|1<x<2},則a+b=4.

分析 不等式ax2-bx+2<0的解集是{x|1<x<2},故1,2是方程ax2-bx+2=0的兩個根,由根與系數(shù)的關系求出a,b,即可.

解答 解:由題意不等式ax2-bx+2<0的解集是{x|1<x<2},可知不等式是二次不等式,
故1,2是方程ax2-bx+2=0的兩個根,
∴1+2=$\frac{a}$,1×2=$\frac{2}{a}$
∴a=1,b=3.
∴a+b=4.
故答案為:4.

點評 本題考查一元二次不等式與一元二次方程的關系,解答本題的關鍵是根據(jù)不等式的解集得出不等式相應方程的根,再由根與系數(shù)的關系求參數(shù)的值.注意總結(jié)方程,函數(shù),不等式三者之間的聯(lián)系.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

12.已知變量x、y滿足約束條件$\left\{{\begin{array}{l}{x-2≤0}\\{2x-y≥0}\\{x+y-3≥0}\end{array}}\right.$,則z=x+y的最大值為6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖所示,已知P、Q是單位正方體ABCD-A1B1C1D1的面A1B1BA和面ABCD的中心.
①求證:PQ∥平面BCC1B1
②設M為直線C1D1中點,求異面直線PQ與AM的夾角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.下列命題中是真命題的所有序號有(3)、(4)、(5)
(1)若$\overrightarrow{a}•\overrightarrow$=$\overrightarrow{a}•\overrightarrow{c}$,則$\overrightarrow$=$\overrightarrow{c}$;
(2)對空間任意點O與不共線的三點A,B,C,若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$(x,y,z∈R),則P,A,B,C四點共面;
(3)“曲線C上的點的坐標都是方程f(x,y)=0的解”是“曲線C的方程是f(x,y)=0”的必要條件;
(4)曲線C的方程是f(x,y)=0,則曲線C關于y軸對稱的曲線方程是f(-x,y)=0;
(5)($\overrightarrow{c}$•$\overrightarrow$)$\overrightarrow{a}$-($\overrightarrow{a}•\overrightarrow{c}$)$\overrightarrow$與$\overrightarrow{c}$垂直.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示.
(1)求f(x)的解析式;
(2)求f(x)在x∈[0,π]上的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.以直角坐標原點為極點,x軸非負半軸為極軸建立極坐標系,已知直線l的極坐標方程為:ρcos(θ-$\frac{π}{4}$)=2$\sqrt{2}$.曲線C的參數(shù)方程為:$\left\{\begin{array}{l}x=1+3cosα\\ y=3sinα\end{array}\right.$(α為參數(shù)).
(1)求直線l的直角坐標方程與曲線C的普通方程;
(2)已知直線l與曲線C相交于A、B兩點,求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.在△ABC中,b=$\sqrt{3}$,c=1,B=60°,則A=( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.對于函數(shù)f(x)=$\left\{\begin{array}{l}{(x-1)^{2},x≥0}\\{(x+1)^{2},x<0}\end{array}\right.$,下列結(jié)論中正確的是( 。
A.是奇函數(shù),且在[0,1]上是減函數(shù)B.是奇函數(shù),且在[1,+∞)上是減函數(shù)
C.是偶函數(shù),且在[-1,0]上是減函數(shù)D.是偶函數(shù),且在(-∞,-1]上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知全集I={x|-3≤x<5},A={x|-1<x≤1},B={x|-3<x<1},求A∩B,A∪(∁IB).

查看答案和解析>>

同步練習冊答案