【題目】如圖,在直三棱柱中,,,點(diǎn)為棱的中點(diǎn),點(diǎn)為線段上一動(dòng)點(diǎn).

(Ⅰ)求證:當(dāng)點(diǎn)為線段的中點(diǎn)時(shí),平面;

(Ⅱ)設(shè),試問(wèn):是否存在實(shí)數(shù),使得平面與平面所成銳二面角的余弦值為?若存在,求出這個(gè)實(shí)數(shù);若不存在,請(qǐng)說(shuō)明理由.

【答案】(Ⅰ)見解析;(2)

【解析】試題分析:

(Ⅰ)連,由題意可證得.又在平面,從而可得平面.(Ⅱ)由題意可建立空間直角坐標(biāo)系,結(jié)合條件可得,從而可得平面的法向量,同理可得平面的法向量,根據(jù)解得,故存在實(shí)數(shù)滿足條件.

試題解析

(Ⅰ)證明:連、,

∵點(diǎn)為線段的中點(diǎn),

、三點(diǎn)共線.

∵點(diǎn)、分別為的中點(diǎn),

在直三棱柱中,,

平面,

,

,

∴四邊形為正方形,

,

、平面

平面,

,

平面.

(Ⅱ)解:以為原點(diǎn),分別以、軸、軸、軸建立空間直角坐標(biāo)系,

連接、,設(shè),

,

,

,∴.

∵點(diǎn)在線段上運(yùn)動(dòng),

∴平面的法向量即為平面的法向量,

設(shè)平面的法向量為,

,令,

設(shè)平面的法向量為,

,

,取,

由題意得|

,

解得.

∴當(dāng)時(shí),平面與平面所成銳二面角的余弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求不等式的解集;

(2)當(dāng)時(shí),求方程的解;

(3)若,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在正方體ABCDA1B1C1D1中,M,N分別是棱AB,CC1的中點(diǎn),△MB1P的頂點(diǎn)P在棱CC1與棱C1D1上運(yùn)動(dòng),有以下四個(gè)命題:

①平面MB1P⊥ND1

②平面MB1P⊥平面ND1A1;

③△MB1P在底面ABCD上的射影圖形的面積為定值;

④△MB1P在側(cè)面DD1C1C上的射影圖形是三角形.

其中正確的命題序號(hào)是(  )

A. B. ②③

C. ①③D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】本小題滿分12已知函數(shù)

1若直線過(guò)點(diǎn),并且與曲線相切,求直線的方程;

2設(shè)函數(shù)上有且只有一個(gè)零點(diǎn),求的取值范圍。其中為自然對(duì)數(shù)的底數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)年新年賀歲大片《流浪地球》自上映以來(lái)引發(fā)了社會(huì)的廣泛關(guān)注,受到了觀眾的普遍好評(píng).假設(shè)男性觀眾認(rèn)為《流浪地球》好看的概率為,女性觀眾認(rèn)為《流浪地球》好看的概率為.某機(jī)構(gòu)就《流浪地球》是否好看的問(wèn)題隨機(jī)采訪了名觀眾(其中女).

(1)求這名觀眾中女性認(rèn)為好看的人數(shù)比男性認(rèn)為好看的人數(shù)多的概率;

(2)設(shè)表示這名觀眾中認(rèn)為《流浪地球》好看的人數(shù),求的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的方程為,直線過(guò)定點(diǎn)P(2,0),斜率為。當(dāng)為何值時(shí),直線與拋物線:

(1)只有一個(gè)公共點(diǎn);

(2)有兩個(gè)公共點(diǎn);

(3)沒有公共點(diǎn)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知傾斜角為的直線經(jīng)過(guò)拋物線的焦點(diǎn),與拋物線相交于、兩點(diǎn),且.

(Ⅰ)求拋物線的方程;

(Ⅱ)過(guò)點(diǎn)的兩條直線、分別交拋物線于點(diǎn)、、,線段的中點(diǎn)分別為、.如果直線的傾斜角互余,求證:直線經(jīng)過(guò)一定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的差都大于2,則稱這個(gè)數(shù)列為阿當(dāng)數(shù)列”.

1)若數(shù)列阿當(dāng)數(shù)列,且,,求實(shí)數(shù)的取值范圍;

2)是否存在首項(xiàng)為1的等差數(shù)列阿當(dāng)數(shù)列,且其前項(xiàng)和滿足?若存在,請(qǐng)求出的通項(xiàng)公式;若不存在,請(qǐng)說(shuō)明理由.

3)已知等比數(shù)列的每一項(xiàng)均為正整數(shù),且阿當(dāng)數(shù)列,,,當(dāng)數(shù)列不是阿當(dāng)數(shù)列時(shí),試判斷數(shù)列是否為阿當(dāng)數(shù)列,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有窮數(shù)列中的每一項(xiàng)都是-1,0,1這三個(gè)數(shù)中的某一個(gè)數(shù),,且,則有窮數(shù)列中值為0的項(xiàng)數(shù)是(

A. 1000B. 1010C. 1015D. 1030

查看答案和解析>>

同步練習(xí)冊(cè)答案