求下列曲線所圍成的圖形的面積
y=ex-1,x=-ln2,y=e-1.
考點(diǎn):定積分在求面積中的應(yīng)用
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:所求曲邊梯形的面積為定積分
1
-ln2
(ex-1)dx
,然后計(jì)算即可.
解答: 解:當(dāng)y=e-1時(shí),x=1,
所以所求曲邊梯形的面積為
1
-ln2
(ex-1)dx
=(ex-x)
|
1
-ln2
=e-
3
2
-ln2.
點(diǎn)評:本題考查了利用定積分求曲邊梯形的面積;首先明確面積的定積分表示,然后求值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知α,β,直線l,m,且有l(wèi)⊥α,m?β,給出下列命題:
①若α∥β,則l⊥m;②若l∥m,則α⊥β;③若α⊥β,則l∥m;④若l⊥m,則α∥β;
其中,正確命題個(gè)數(shù)有( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是正數(shù)組成的數(shù)列,a1=1,且點(diǎn)(
an
,an+1)(n∈N*)在函數(shù)y=x2+1的圖象上.?dāng)?shù)列{bn}滿足b1=1,bn+1=bn+2an
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)若數(shù)列{cn}滿足cn=an•bn,求{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

書架上有語文書,數(shù)學(xué)書各三本,從中任取兩本,取出的恰好都是數(shù)學(xué)書的概率為( 。
A、
1
3
B、
1
4
C、
1
5
D、
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z滿足z2=5-12i,則f(z)=z-
1
z
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知圓C:x2+(y-3)2=2,點(diǎn)A是x軸上的一個(gè)動點(diǎn),AP,AQ分別切圓C于P,Q兩點(diǎn),則線段PQ的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為增強(qiáng)市民的節(jié)能環(huán)保意識,某市面向全市征召義務(wù)宣傳志愿者,從符合條件的200名志愿者中隨機(jī)抽取60名志愿者,其中年齡分組區(qū)間是:[20,25),[25,30),[30,35),[35,40),[40,45].
(1)求圖中x的值并根據(jù)頻率分布直方圖估計(jì)這200名志愿者中年齡在[30,35)歲的人數(shù);
(2)在抽出的60名志愿者中按年齡在區(qū)間[20,35)和[35,45]采用分層抽樣的方法抽取5名參加中心廣場的宣傳活動,再從這5名中采用簡單隨機(jī)抽樣方法選取2名志愿者擔(dān)任主要負(fù)責(zé)人,求所選兩人中至少有一個(gè)年齡不低于35歲的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(2x+1)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,則a0+a1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,an.Sn滿足(t-1)Sn=t(an-2)(t為常數(shù),t≠0且t≠1).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(-an)•log3(1-Sn),當(dāng)t=
1
3
時(shí),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案