18.已知在數(shù)列{an}中,a1=1,an+1=2an+n-1,n∈N*
(1)證明:數(shù)列{an+n}是等比數(shù)列;
(2)求數(shù)列{an}的前n項和Sn

分析 (1)由an+1=2an+n-1,n∈N*.變形為an+1+n+1=2(an+n),n∈N*.即可證明.
(2)由(1)得an+n=2n,利用等差數(shù)列與等比數(shù)列的求和公式即可得出.

解答 (1)證明:由an+1=2an+n-1,n∈N*
可得an+1+n+1=2(an+n),n∈N*
又a1+1=2,所以數(shù)列{an+n}是以2為首項,以2為公比的等比數(shù)列.
(2)解:由(1)得an+n=2n,
故an=2n-n,
所以數(shù)列{an}的前n項和Sn=$\frac{2({2}^{n}-1)}{2-1}$-$\frac{n(n+1)}{2}$=2n+1-2-$\frac{n(n+1)}{2}$.

點(diǎn)評 本題考查了數(shù)列遞推關(guān)系、通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在四棱錐 P-ABCD中,底面是邊長為a的正方形,側(cè)棱PD=a,PA=PC=$\sqrt{2}$a.
(1)求證:PD⊥平面ABCD;
(2)求證:平面PAC⊥平面PBD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求過點(diǎn)A(2,1),圓心在直線y=-2x上,且與直線x+y-1=0相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.將函數(shù)f(x)=$\sqrt{3}$sin2x-cos2x的圖象向左平移φ(0<φ<$\frac{π}{2}$)個單位長度后得到函數(shù)y=g(x)的圖象,若g(x)≤|g($\frac{π}{6}$)|對x∈R恒成立,則函數(shù)y=g(x)的單調(diào)遞減區(qū)間是( 。
A.[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$](k∈Z)B.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z)
C.[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$](k∈Z)D.[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知F1、F2是雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn),點(diǎn)M在E的漸近線上,且MF1與x軸垂直,sin∠MF2F1=$\frac{1}{3}$,則E的離心率為( 。
A.$\frac{\sqrt{6}}{2}$B.$\frac{3}{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在數(shù)列{an}中,a1=2,2an+1=2an+1,則a2015的值是( 。
A.1009B.1008C.1010D.1011

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知$cosα=\frac{3}{5}$,$α∈(\frac{3π}{2},2π)$,則$cos(α-\frac{π}{4})$=( 。
A.$\frac{{7\sqrt{2}}}{10}$B.$-\frac{{7\sqrt{2}}}{10}$C.$\frac{{\sqrt{2}}}{10}$D.$-\frac{{\sqrt{2}}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知正四面體棱長為4$\sqrt{2}$,則此正四面體外接球的表面積為(  )
A.36πB.48πC.64πD.72π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知f(x)=xlnx,g(x)=x3+ax2-x+2
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)在[t,t+2](t>0)上的最小值.

查看答案和解析>>

同步練習(xí)冊答案