A. | $\frac{\sqrt{6}}{2}$ | B. | $\frac{3}{2}$ | C. | $\sqrt{3}$ | D. | 2 |
分析 根據MF1與x軸垂直,sin∠MF2F1=$\frac{1}{3}$,得到tan∠MF2F1=$\frac{1}{2\sqrt{2}}$,MF1=$\frac{bc}{a}$,求解即可.
解答 解:∵MF1與x軸垂直,sin∠MF2F1=$\frac{1}{3}$,
∴tan∠MF2F1=$\frac{1}{2\sqrt{2}}$,MF1=$\frac{bc}{a}$
∴$\frac{\frac{bc}{a}}{2c}$=$\frac{1}{2\sqrt{2}}$,∴b=$\frac{\sqrt{2}}{2}$a
∴c=$\sqrt{{a}^{2}+\frac{1}{2}{a}^{2}}$=$\frac{\sqrt{6}}{2}$a,
∴e=$\frac{\sqrt{6}}{2}$
故選:A.
點評 本題主要考查雙曲線離心率的計算,根據雙曲線的定義結合直角三角形的勾股定理,結合雙曲線離心率的定義是解決本題的關鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,0) | B. | (-48,0) | C. | (-192,0) | D. | (-60,-48) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|-2<x<1} | B. | {x|-2≤x<1} | C. | {x|-2≤x≤1} | D. | {x|-2<x≤1} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 如果直線m∥平面α,直線n?α內,那么m∥n | |
B. | 如果平面α⊥平面β,任取直線m?α,那么必有m丄β | |
C. | 若直線m∥平面α,直線n∥平面α,則m∥n | |
D. | 如果平面a外的一條直線m垂直于平面a內的兩條相交直線,那么m⊥α |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com