已知函數(shù).
(1)若函數(shù)在區(qū)間其中a >0,上存在極值,求實數(shù)a的取值范圍;
(2)如果當時,不等式恒成立,求實數(shù)k的取值范圍.
(1);(2) .
解析試題分析:(1)由于函數(shù)是一個確定的具體的函數(shù),所以它的極值點也是確定的;故我們只須應用導數(shù)求出函數(shù)的極值點,注意定義域;讓極值點屬于區(qū)間可得到關(guān)于a的不等式,從而就可求出實數(shù)a的取值范圍;(2)顯然不等式等價于:因此當時,不等式恒成立其中,所以利用函數(shù)的導數(shù)求出的最小值即可.
試題解析:(1)因為, x >0,則,
當時,;當時,.
所以在(0,1)上單調(diào)遞增;在上單調(diào)遞減,
所以函數(shù)在處取得極大值.
因為函數(shù)在區(qū)間(其中)上存在極值,
所以 解得.
(2)不等式即為 記
所以
令,則,
,
在上單調(diào)遞增,
,從而,
故在上也單調(diào)遞增, 所以,所以 .
考點:1.函數(shù)的極值與最值;2.不等式恒成立.
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)在處有極大值.
(Ⅰ)求的值;
(Ⅱ)若過原點有三條直線與曲線相切,求的取值范圍;
(Ⅲ)當時,函數(shù)的圖象在拋物線的下方,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù)().
(1)求的單調(diào)區(qū)間;(4分)
(2)求所有實數(shù),使對恒成立.(8分)
(注:為自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),函數(shù).
⑴當時,函數(shù)的圖象與函數(shù)的圖象有公共點,求實數(shù)的最大值;
⑵當時,試判斷函數(shù)的圖象與函數(shù)的圖象的公共點的個數(shù);
⑶函數(shù)的圖象能否恒在函數(shù)的上方?若能,求出的取值范圍;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
近年來,某企業(yè)每年消耗電費約24萬元,為了節(jié)能減排,決定安裝一個可使用15年的太陽能供電設(shè)備接入本企業(yè)電網(wǎng),安裝這種供電設(shè)備的工本費(單位:萬元)與太陽能電池板的面積(單位:平方米)成正比,比例系數(shù)約為0.5.為了保證正常用電,安裝后采用太陽能和電能互補供電的模式.假設(shè)在此模式下,安裝后該企業(yè)每年消耗的電費(單位:萬元)與安裝的這種太陽能電池板的面積(單位:平方米)之間的函數(shù)關(guān)系是為常數(shù)).記為該村安裝這種太陽能供電設(shè)備的費用與該村15年共將消耗的電費之和.
(1)試解釋的實際意義,并建立關(guān)于的函數(shù)關(guān)系式;
(2)當為多少平方米時,取得最小值?最小值是多少萬元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù).
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)關(guān)于的方程f(x)=a在區(qū)間上有兩個根,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com