(1)(選修4-4坐標(biāo)系與參數(shù)方程)
已知直線(xiàn)的極坐標(biāo)方程為,則極點(diǎn)到該直線(xiàn)的距離是   
(2)(選修4-5 不等式選講)
已知lga+lgb=0,則滿(mǎn)足不等式的實(shí)數(shù)λ的范圍是   
(3)(選修4-1 幾何證明選講)
如圖,兩個(gè)等圓⊙O與⊙O′外切,過(guò)O作⊙O′的兩條切線(xiàn)OA,OB,A,B是切點(diǎn),點(diǎn)C在圓O′上且不與點(diǎn)A,B重合,則∠ACB=   
【答案】分析:(1)把直線(xiàn)、曲線(xiàn)的極坐標(biāo)方程化為直角坐標(biāo)方程,利用點(diǎn)到直線(xiàn)的距離公式求出極點(diǎn)到該直線(xiàn)的距離.
(2)由條件可得ab=1,且a、b都為正數(shù),利用基本不等式求出 的最大值,從而得到實(shí)數(shù)λ的范圍.
(3)連接OO′,AO′,B0′,設(shè)圓的半徑為r,根據(jù)切線(xiàn)的性質(zhì)可得AO′⊥AO,BO′⊥BO,由兩圓相外切可得,OO′=2r,AO′=BO′=r,從而有∠AOO′=∠BOO′=30°,∠AO′B=2×60°=120°,由圓周角定理可得∠ACB=∠AO′B的值
解答:解:(1)直線(xiàn)的極坐標(biāo)方程為
+=,化為直角坐標(biāo)為 x+y=1.
故極點(diǎn)到該直線(xiàn)的距離為 =
故答案為
(2)∵lga+lgb=0,∴ab=1,且a、b都為正數(shù).
由于=,當(dāng)且僅當(dāng)a=1時(shí),等號(hào)成立.同理可得,

不等式 的實(shí)數(shù)λ的范圍是 λ≥1,
故答案為[1,+∞).
(3)解:連接OO′,AO′,B0′,設(shè)圓的半徑為r
根據(jù)切線(xiàn)的性質(zhì)可得AO′⊥AO,BO′⊥BO
由兩圓相外切可得,OO′=2r,AO′=BO′=r
∴∠AOO′=∠BOO′=30°,∠AO′B=2×60°=120°
由圓周角定理可得,∠ACB=∠AO′B=60°
故答案為 60°.
點(diǎn)評(píng):本題主要考查了極坐標(biāo)方程化為直角坐標(biāo)方程的方法,點(diǎn)到該直線(xiàn)的距離公式,基本不等式的應(yīng)用,圓的切線(xiàn)的性質(zhì)、兩圓相外切的性質(zhì)、圓周角定理的綜合應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•葫蘆島模擬)選修4-4:坐標(biāo)系與參數(shù)方程.
在平面直角坐標(biāo)系中,曲線(xiàn)C1的參數(shù)方程為
x=acos?
y=bsin?
(a>b>0,?為參數(shù)),以Ο為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C2是圓心在極軸上且經(jīng)過(guò)極點(diǎn)的圓,已知曲線(xiàn)C1上的點(diǎn)M(2,
3
)對(duì)應(yīng)的參數(shù)φ=
π
3
;θ=
π
4
;與曲線(xiàn)C2交于點(diǎn)D(
2
,
π
4

(1)求曲線(xiàn)C1,C2的方程;
(2)A(ρ1,θ),Β(ρ2,θ+
π
2
)是曲線(xiàn)C1上的兩點(diǎn),求
1
ρ
2
1
+
1
ρ
2
2
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(選做題)本題包括A、B、C、D四小題,請(qǐng)選定其中兩題,并在答題卡指定區(qū)域內(nèi)作答,若多做,則按作答的前兩題評(píng)分,解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
A.[選修4-1:幾何證明選講]
已知△ABC中,AB=AC,D是△ABC外接圓劣弧AC上的點(diǎn)(不與點(diǎn)A,C重合),延長(zhǎng)BD至點(diǎn)E.
求證:AD的延長(zhǎng)線(xiàn)平分∠CDE
B.[選修4-2:矩陣與變換]
已知矩陣A=
12
-14

(1)求A的逆矩陣A-1;
(2)求A的特征值和特征向量.
C.[選修4-4:坐標(biāo)系與參數(shù)方程]
已知曲線(xiàn)C的極坐標(biāo)方程為ρ=4sinθ,以極點(diǎn)為原點(diǎn),極軸為x軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線(xiàn)l的參數(shù)方程為
x=
1
2
t
y=
3
2
t+1
(t為參數(shù)),求直線(xiàn)l被曲線(xiàn)C截得的線(xiàn)段長(zhǎng)度.
D.[選修4-5,不等式選講](本小題滿(mǎn)分10分)
設(shè)a,b,c均為正實(shí)數(shù),求證:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

附加題:(選做題:在下面A、B、C、D四個(gè)小題中只能選做兩題)
A.選修4-1:幾何證明選講
如圖,已知AB、CD是圓O的兩條弦,且AB是線(xiàn)段CD的垂直平分線(xiàn),
已知AB=6,CD=2
5
,求線(xiàn)段AC的長(zhǎng)度.
B.選修4-2:矩陣與變換
已知二階矩陣A有特征值λ1=1及對(duì)應(yīng)的一個(gè)特征向量e1=
1
1
和特征值λ2=2及對(duì)應(yīng)的一個(gè)特征向量e2=
1
0
,試求矩陣A.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,已知曲線(xiàn)C的參數(shù)方程是
y=sinθ+1
x=cosθ
(θ是參數(shù)),若以O(shè)為極點(diǎn),x軸的正半軸為極軸,取與直角坐標(biāo)系中相同的單位長(zhǎng)度,建立極坐標(biāo)系,求曲線(xiàn)C的極坐標(biāo)方程.
D.選修4-5:不等式選講
已知關(guān)于x的不等式|ax-1|+|ax-a|≥1(a>0).
(1)當(dāng)a=1時(shí),求此不等式的解集;
(2)若此不等式的解集為R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4~4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,直線(xiàn)l的參數(shù)方程為
x=1+tcosα
y=2+tsinα
(t為參數(shù))在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位.且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為ρ=6sinθ.
(I)求圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C與直線(xiàn)l交于點(diǎn)A,B.若點(diǎn)P的坐標(biāo)為(1,2),求|PA|+|PB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(選修4-4:坐標(biāo)系與參數(shù)方程)  
在極坐標(biāo)系中,已知圓ρ=asinθ(a>0)與直線(xiàn)ρcos(θ+
π4
)=1相切,求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案