如圖,四邊形為矩形,平面,,平面于點(diǎn),且點(diǎn)在上.
(1)求證:;
(2)求四棱錐的體積;
(3)設(shè)點(diǎn)在線(xiàn)段上,且,試在線(xiàn)段上確定一點(diǎn),使得平面.
(1)證明略;(2);(3)存在點(diǎn)N即為點(diǎn)F使得.
解析試題分析:(1)先由 ,又,由線(xiàn)面垂直的判定定理由,根據(jù)面面垂直的性質(zhì)定理有,可證線(xiàn)線(xiàn)垂直;
(2) 由(1)可知該幾何體是一個(gè)四棱錐,作,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4f/e/hkfom4.png" style="vertical-align:middle;" />,所以 ,所以 ;
(3) 由已知有分別為的中點(diǎn),只需要取的中點(diǎn),由
則點(diǎn)就是點(diǎn).
試題解析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b2/5/fluec.png" style="vertical-align:middle;" />平面,∥
所以,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/69/3/10ktg4.png" style="vertical-align:middle;" />平面于點(diǎn),
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f4/2/1ggjn2.png" style="vertical-align:middle;" />,所以面,
則
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/7f/a/hofz72.png" style="vertical-align:middle;" />,所以面,
則
(2)作,因?yàn)槊?img src="http://thumb.zyjl.cn/pic5/tikupic/05/4/7nkhw.png" style="vertical-align:middle;" />平面,所以面
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f7/e/1x5xc3.png" style="vertical-align:middle;" />,,所以
(3)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/08/4/dweyi2.png" style="vertical-align:middle;" />,平面于點(diǎn),所以是的中點(diǎn)
設(shè)是的中點(diǎn),連接
所以∥∥
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/63/3/u2yq01.png" style="vertical-align:middle;" />,所以∥面,則點(diǎn)就是點(diǎn)
考點(diǎn):1、線(xiàn)面平行的性質(zhì);2、線(xiàn)面垂直的性質(zhì)定理;3、線(xiàn)面垂直的判定定理;4、面面垂直的性質(zhì)定理;5、四棱錐的體積公式;6、面面平行的判定地理;7、探究存在性問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,E是以AB為直徑的半圓上異于點(diǎn)A、B的點(diǎn),矩形ABCD所在的平面垂直于該半圓所在的平面,且AB=2AD=2
(1)求證:
(2)設(shè)平面與半圓弧的另一個(gè)交點(diǎn)為
①試證:
②若求三棱錐的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,一個(gè)圓錐形的空杯子上面放著一個(gè)半球形的冰淇淋,如果冰淇淋融化了并流入杯中,會(huì)溢出杯子嗎?請(qǐng)用你的計(jì)算數(shù)據(jù)說(shuō)明理由。(冰、水的體積差異忽略不計(jì))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知半徑為的球內(nèi)有一個(gè)內(nèi)接正方體(即正方體的頂點(diǎn)都在球面上).
(1)求此球的體積;
(2)求此球的內(nèi)接正方體的體積;
(3)求此球的表面積與其內(nèi)接正方體的全面積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知在四棱錐P﹣ABCD中,底面ABCD是邊長(zhǎng)為4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E,F(xiàn),G分別是PD,PC,BC的中點(diǎn).
(1)求證:平面EFG⊥平面PAD;
(2)若M是線(xiàn)段CD上一點(diǎn),求三棱錐M﹣EFG的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在三棱錐中,側(cè)棱長(zhǎng)均為,底邊,,,、分別為、的中點(diǎn).
(1)求三棱錐的體積;
(2)求二面角的平面角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在邊長(zhǎng)為的正方形ABCD中,E、F分別為BC、CD的中點(diǎn),M、N分別為AB、CF的中點(diǎn),現(xiàn)沿AE、AF、EF折疊,使B、C、D三點(diǎn)重合于B,構(gòu)成一個(gè)三棱錐(如圖所示).
(Ⅰ)在三棱錐上標(biāo)注出、點(diǎn),并判別MN與平面AEF的位置關(guān)系,并給出證明;
(Ⅱ)是線(xiàn)段上一點(diǎn),且,問(wèn)是否存在點(diǎn)使得,若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由;
(Ⅲ)求多面體E-AFNM的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在三棱錐中,是邊長(zhǎng)為的正三角形,平面⊥平面,,、分別為、的中點(diǎn).
(Ⅰ)證明:⊥;
(Ⅱ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
四棱錐中,底面為平行四邊形,側(cè)面底面,為 的中點(diǎn),已知,
(Ⅰ)求證:;
(Ⅱ)在上求一點(diǎn),使平面;
(Ⅲ)求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com