【題目】如圖,在四棱錐中,,底面為邊長為的菱形,且.
(1)證明:;
(2)若,求直線與平面所成角的正弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)連接,取的中點,連接、,通過證明出平面得出;
(2)先證明出,然后以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,計算出平面的法向量,利用空間向量法可計算出直線與平面所成角的正弦值.
(1)連接,因為底面是菱形,且,所以為等邊三角形,
取中點,連接、,所以,且,所以,
,所以平面,平面,所以;
(2)因為,且,所以,所以,,
,所以,
又因為平面,以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,如圖所示,
則、、、,
則,,,
設(shè)平面的法向量為,
則,令,則,,則,
設(shè)與平面所成角為,則.
因此,直線與平面所成角的正弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直四棱柱ABCD-A1B1C1D1中,AD//平面BCC1B1,AD⊥DB.求證:
(1)BC//平面ADD1A1;
(2)平面BCC1B1⊥平面BDD1B1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大型企業(yè)生產(chǎn)的某批產(chǎn)品細分為個等級,為了了解這批產(chǎn)品的等級分布情況,從倉庫存放的件產(chǎn)品中隨機抽取件進行檢測、分類和統(tǒng)計,并依據(jù)以下規(guī)則對產(chǎn)品進行打分:級或級產(chǎn)品打分;級或級產(chǎn)品打分;級、級、級或級產(chǎn)品打分;其余產(chǎn)品打分.現(xiàn)在有如下檢測統(tǒng)計表:
等級 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
頻數(shù) | 10 | 90 | 100 | 200 | 200 | 100 | 100 | 100 | 70 | 30 |
規(guī)定:打分不低于分的為優(yōu)良級.
(1)①試估計該企業(yè)庫存的件產(chǎn)品為優(yōu)良級的概率;
②請估計該企業(yè)庫存的件產(chǎn)品的平均得分.
(2)從該企業(yè)庫存的件產(chǎn)品中隨機抽取件,請估計這件產(chǎn)品的打分之和為分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中,
(1)若,且是的極大值點,求的取值范圍;
(2)當,時,方程有唯一實數(shù)根,求正數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某工廠生產(chǎn)的某種產(chǎn)品中抽取1000件,測量這些產(chǎn)品的一項質(zhì)量指標值,由測量結(jié)果得如下頻率分布直方圖:
(1)求這1000件產(chǎn)品質(zhì)量指標值的樣本平均數(shù)和樣本方差(同一組數(shù)據(jù)用該區(qū)間的中點值作代表)
(2)由頻率分布直方圖可以認為,這種產(chǎn)品的質(zhì)量指標值服從正態(tài)分布,其中以近似為樣本平均數(shù),近似為樣本方差.
(。├迷撜龖B(tài)分布,求;
(ⅱ)某用戶從該工廠購買了100件這種產(chǎn)品,記表示這100件產(chǎn)品中質(zhì)量指標值為于區(qū)間(127.6,140)的產(chǎn)品件數(shù),利用(。┑慕Y(jié)果,求.
附:.若,則,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,cosB=.
(Ⅰ)若c=2a,求的值;
(Ⅱ)若C-B=,求sinA的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴重缺水的國家之一,城市缺水問題較為突出.某市為了節(jié)約生活用水,計劃在本市試行居民生活用水定額管理(即確定一個居民月均用水量標準:用水量不超過a的部分按照平價收費,超過a的部分按照議價收費).為了較為合理地確定出這個標準,通過抽樣獲得了100位居民某年的月均用水量(單位:噸),制作了頻率分布直方圖,
(Ⅰ)用該樣本估計總體:
(1)估計該市居民月均用水量的平均數(shù);
(2)如果希望86%的居民每月的用水量不超出標準,則月均用水量a的最低標準定為多少噸?
(Ⅱ)若將頻率視為概率,現(xiàn)從該市某大型生活社區(qū)隨機調(diào)查3位居民的月均用水量,其中月均用水量不超過2.5噸的人數(shù)為X,求X的分布列和均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)在上的最大值;
(2)令,若在區(qū)間上為單調(diào)遞增函數(shù),求的取值范圍;
(3)當 時,函數(shù) 的圖象與軸交于兩點 ,且 ,又是的導(dǎo)函數(shù).若正常數(shù) 滿足條件.證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大學(xué)生趙敏利用寒假參加社會實踐,對機械銷售公司7月份至12月份銷售某種機械配件的銷售量及銷售單價進行了調(diào)查,銷售單價和銷售量之間的一組數(shù)據(jù)如下表所示:
月份 | 7 | 8 | 9 | 10 | 11 | 12 |
銷售單價(元) | 9 | 9.5 | 10 | 10.5 | 11 | 8 |
銷售量(件) | 11 | 10 | 8 | 6 | 5 | 14 |
(1)根據(jù)7至11月份的數(shù)據(jù),求出關(guān)于的回歸直線方程;
(2)若由回歸直線方程得到的估計數(shù)據(jù)與剩下的檢驗數(shù)據(jù)的誤差不超過0.5元,則認為所得到的回歸直線方程是理想的,試問(1)中所得到的回歸直線方程是否理想?
(3)預(yù)計在今后的銷售中,銷售量與銷售單價仍然服從(1)中的關(guān)系,若該種機器配件的成本是2.5元/件,那么該配件的銷售單價應(yīng)定為多少元才能獲得最大利潤?(注:利潤=銷售收入-成本).
參考公式:回歸直線方程,其中,參考數(shù)據(jù): .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com