11.直線x-y+1=0的傾斜角為( 。
A.90°B.45°C.135°D.60°

分析 根據(jù)題意,設(shè)該直線的傾斜角為θ,由直線方程x-y+1=0可得直線的斜率k,進(jìn)而由直線的傾斜角與斜率的關(guān)系tanθ=k,計算可得答案.

解答 解:根據(jù)題意,設(shè)該直線的傾斜角為θ,(0°≤θ<180°)
直線方程x-y+1=0,其斜率k=1,
有tanθ=k=1,解可得θ=45°,
故選:B.

點(diǎn)評 本題考查直線的傾斜角,要掌握直線的斜率與傾斜角的關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知Fn(x)=(-1)0Cn0f0(x)+(-1)1Cn1fi(x)+…+(-1)nCnnfn(x),(n∈N*)(x>0),其中,fi(x)(i∈{0,1,2,…,n})是關(guān)于x的函數(shù).
(1)若fi(x)=xi(i∈N),求關(guān)于F2(1),F(xiàn)2017(2)的值;
(2)若fi(x)=$\frac{x}{x+i}$(i∈N),求證:Fn(x)=$\frac{n!}{(x+1)(x+2)…(x+n)}$(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=ex+e-x,其中e是自然對數(shù)的底數(shù).
(1)證明:f(x)是R上的偶函數(shù);
(2)判斷f(x)在(0,+∞)上的單調(diào)性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.給出定義:若m-$\frac{1}{2}$<x≤m+$\frac{1}{2}$(其中m為整數(shù)),則m叫做離實(shí)數(shù)x最近的整數(shù),記作{x},即{x}=m.在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=x-{x}的三個判斷:
①y=f(x)的定義域是R,值域是(-$\frac{1}{2}$,$\frac{1}{2}$];  
②點(diǎn)(k,0)是y=f(x)的圖象的對稱中心,其中k∈Z;
③函數(shù)y=f(x)在($\frac{1}{2}$,$\frac{3}{2}$]上是增函數(shù).
則上述判斷中所有正確的序號是( 。
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.用秦九韶算法求n次多項式f(x)=anxn+an-1xn-1+…+a1x+a0,當(dāng)x=x0時的值,其算法步驟如下:
第一步,輸入n,an和x的值,
第二步,v=an,i=n-1,
第三步,輸入i次項系數(shù)ai,
第四步,v=vx+ai,i=i-1,
第五步:判斷i是否大于或等于0,若是,則返回第三步;否則,輸出多項式的值v.該算法中第四步空白處應(yīng)該是v=vx+ai

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某車間為了規(guī)定工時定額,需要確定加工零件所花費(fèi)的時間,為此做了四次試驗,得到的數(shù)據(jù)如表所示:
零件的個數(shù)x(個)2345
加工的時間y(h)2.5344.5
($\widehat{a}=\overline{y}-\widehat\overline{x}$,$\widehat=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$)
(Ⅰ)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點(diǎn)圖;
(Ⅱ)求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(Ⅲ)試預(yù)測加工10個零件需要多少時間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.某班共有50名學(xué)生,通過調(diào)查發(fā)現(xiàn)有30人同時在張老師和王老師的朋友圈,只有1人不在任何一個老師的朋友圈,且張老師的朋友圈比王老師的朋友圈多7人,則張老師的朋友圈有43人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在圓內(nèi)接四邊形ABCD中,AB=2,AD=1,$\sqrt{3}$BC=$\sqrt{3}$BDcosα+CDsinβ
(Ⅰ)求角β的大小
(Ⅱ)求四邊形ABCD周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若直線l:(a2-1)x-y-2a+1=0不過第二象限,則a的取值范圍為( 。
A.(-∞,$\frac{1}{2}$]B.[$\frac{1}{2}$,+∞)C.(-∞,1]D.[1,+∞)

查看答案和解析>>

同步練習(xí)冊答案