1.已知函數(shù)f(x)=sinx-cosx
(1)若f(x)=3f(-x),求$\frac{co{s}^{2}x+sinxcosx}{1+si{n}^{2}x}$的值;
(2)求函數(shù)F(x)=f(x)•f(-x)+f2(-x)的最小值和單調(diào)增區(qū)間.

分析 (1)根據(jù)f(x)=3f(-x),求得tanx的值,再利用同角三角函數(shù)的基本關(guān)系求得$\frac{co{s}^{2}x+sinxcosx}{1+si{n}^{2}x}$的值.
(2)先利用三角恒等變化化簡函數(shù)F(x)=f(x)•f(-x)+f2(-x)的解析式,利用正弦函數(shù)的值域求得它的最小值,利用正弦函數(shù)的單調(diào)性求得它的單調(diào)增區(qū)間.

解答 解:(1)∵函數(shù)f(x)=sinx-cosx,若f(x)=3f(-x),
則sinx-cosx=3(-sinx-cosx ),∴4sinx=-2cosx,tanx=-$\frac{1}{2}$.
∴$\frac{co{s}^{2}x+sinxcosx}{1+si{n}^{2}x}$=$\frac{{cos}^{2}x+sinxcosx}{{2sin}^{2}x{+cos}^{2}x}$=$\frac{1+tanx}{{2tan}^{2}x+1}$=$\frac{1}{3}$.
(2)求函數(shù)F(x)=f(x)•f(-x)+f2(-x)
=(sinx-cosx)•(-sinx-cosx)+(-sinx-cosx)2=cos2x-sin2x+1-2sinxcosx
=cos2x-sin2x+1=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+1,
故該函數(shù)的最小值為-$\sqrt{2}$+1.
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{3π}{8}$≤x≤kπ+$\frac{π}{8}$,
可得函數(shù)的單調(diào)增區(qū)間為[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$],k∈Z.

點評 本題主要考查同角三角函數(shù)的基本關(guān)系,三角恒等變換、正弦函數(shù)的值域及它的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知拋物線C:x2=2py(p>0)的焦點為F,過拋物線上一點P作拋物線C的切線l交x軸于點D,交y軸于點Q,當(dāng)|FD|=2時,∠PFD=60°.
(1)判斷△PFQ的形狀,并求拋物線C的方程;
(2)已知點M(2,2),若拋物線上異于點P的不同兩點A,B滿足$\overrightarrow{AM}$+$\overrightarrow{BM}$=0,且經(jīng)過A,B,P三點的圓和拋物線在點P處有相同的切線,求P點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)集合A={x|x2-4x+3<0},B={x|2x-3>0},則A∩B=(  )
A.(-3,-$\frac{3}{2}$)B.($\frac{3}{2}$,3)C.(1,$\frac{3}{2}$)D.(-3,$\frac{3}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.下表提供了某廠生產(chǎn)某產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對照數(shù)據(jù),
 x 2 4 6 8 10
 y 4 5 7 9 10
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$,
(2)根據(jù)(1)中求出的線性回歸方程,預(yù)測生產(chǎn)20噸該產(chǎn)品的生產(chǎn)能耗是多少噸標(biāo)準(zhǔn)煤?
附:回歸直線的斜率和截距的最小二乘估計分別為:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.函數(shù)f(x)=Asin(ωx+α)(A>0,ω>0,-$\frac{π}{2}$<α<$\frac{π}{2}$)的最小正周期是π,且當(dāng)x=$\frac{π}{6}$時f(x)取得最大值3.
(1)求f(x)的解析式及單調(diào)增區(qū)間;
(2)若x0∈(0,2π],且f(x0)=$\frac{3}{2}$,求x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{m•{4}^{x}+1}{{2}^{x}}$-m(m∈R).
(1)若函數(shù)f(x)有零點,求實數(shù)m的取值范圍;
(2)若對任意的x∈[-1,0]都有f(x)≥0成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若x,y滿足約束條件$\left\{\begin{array}{l}{x≥1}\\{x+y-3≤0}\\{x-y-3≤0}\end{array}\right.$,則x2+y2+4x的最大值為21.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=|2x-a|+|2x-4|,g(x)=|x-2|+1.
(1)a=0時,解不等式f(x)≥8;
(2)若對任意x1∈R,存在x2∈R,使得f(x1)=g(x2)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知實數(shù)a、b是利用計算機生產(chǎn)0~1之間的均勻隨機數(shù),設(shè)事件A=“(a-1)2+(b-1)2>$\frac{1}{4}$”則事件A發(fā)生的概率為( 。
A.1-$\frac{π}{16}$B.$\frac{π}{16}$C.1-$\frac{π}{4}$D.$\frac{π}{4}$

查看答案和解析>>

同步練習(xí)冊答案