3.化簡(jiǎn)或求值:
(1)($\frac{8}{27}$)${\;}^{\frac{2}{3}}$+(0.008)${\;}^{-\frac{2}{3}}$×$\frac{2}{25}$    
(2)$\frac{-5}{lo{g}_{2}3}$+log3$\frac{32}{9}$-3${\;}^{lo{g}_{3}5}$.

分析 (1)利用有理數(shù)指數(shù)冪的性質(zhì)、運(yùn)算法則求解.
(2)利用對(duì)數(shù)性質(zhì)、運(yùn)算法則、換底公式求解.

解答 解:(1)($\frac{8}{27}$)${\;}^{\frac{2}{3}}$+(0.008)${\;}^{-\frac{2}{3}}$×$\frac{2}{25}$
=$\frac{4}{9}$+25×$\frac{2}{25}$
=$\frac{22}{9}$.
(2)$\frac{-5}{lo{g}_{2}3}$+log3$\frac{32}{9}$-3${\;}^{lo{g}_{3}5}$
=-5log32+$lo{g}_{3}\frac{32}{9}$-5
=$lo{g}_{3}\frac{1}{32}$+$lo{g}_{3}\frac{32}{9}$-5
=$lo{g}_{3}\frac{1}{9}$-5
=-7.

點(diǎn)評(píng) 本題考查指數(shù)式、對(duì)數(shù)式化簡(jiǎn)求值,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意指數(shù)、對(duì)數(shù)性質(zhì)及運(yùn)算法則、換底公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,圓錐的頂點(diǎn)為P,底面圓為O,底面的一條直徑為AB,C為半圓弧$\widehat{AB}$的中點(diǎn),E為劣弧$\widehat{CB}$的中點(diǎn),已知PO=2,OA=1,
(1)求三棱錐P-AOC的體積;
(2)求異面直線PA和OE所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立的極坐標(biāo)系中,曲線C1的極坐標(biāo)方程為ρ=2,正三角形ABC的頂點(diǎn)都在C1上,且A,B,C依逆時(shí)針次序排列,點(diǎn)A的坐標(biāo)為(2,0).
(1)求點(diǎn)B,C的直角坐標(biāo);
(2)設(shè)P是圓C2:x2+(y+$\sqrt{3}$)2=1上的任意一點(diǎn),求|PB2|+|PC|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知A(1,0),$B(1,\sqrt{2})$將線段OA,AB各n等分,設(shè)OA上從左至右的第k個(gè)分點(diǎn)為Ak,AB上從下至上的第k個(gè)分點(diǎn)Bk(1<k<n),過(guò)點(diǎn)Ak且垂直于x軸的直線為lK,OBK交lK于PK,則點(diǎn)PK在同一( 。
A.圓上B.橢圓上C.雙曲線上D.拋物線上

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.如圖,正方形SG1G2G3中,E,F(xiàn)分別是G1G2,G2G3中點(diǎn),D是EF與SG2的交點(diǎn),現(xiàn)沿SE,SF及EF把這個(gè)正方形折成一個(gè)四面體,使G1,G2,G3三點(diǎn)重合,重合后的點(diǎn)記為G,則在四面體G-SEF中必有(  )
A.SD⊥平面EFGB.SE⊥GFC.EF⊥平面SEGD.SE⊥SF

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在直三棱柱ABC-A1B1C1中,AB=AC=BC=2,AA1=1,則點(diǎn)A到平面A1BC的距離為( 。
A.$\frac{{\sqrt{3}}}{4}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{3\sqrt{3}}}{4}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖所示,曲線C由部分橢圓C1:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0,y≥0)和部分拋物線C2:y=-x2+1(y≤0)連接而成,C1與C2的公共點(diǎn)為A,B,其中C1所在橢圓的離心率為$\frac{\sqrt{2}}{2}$,
(1)求a,b的值;
(2)過(guò)點(diǎn)B的直線l與C1,C2分別交于點(diǎn)P,Q(P,Q,A,B中任意兩點(diǎn)均不重合),若AP⊥AQ,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.執(zhí)行如圖所示的程序框圖,輸出的S7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.執(zhí)行如圖所示的程序框圖,ze輸出S的值為( 。
A.10B.-6C.3D.12

查看答案和解析>>

同步練習(xí)冊(cè)答案