A. | 0 | B. | 1 | C. | 2 | D. | 3 |
分析 本題利用畫(huà)圖結(jié)合運(yùn)動(dòng)變化的思想進(jìn)行分析.我們不妨先將 A、B、C 按如圖所示放置,容易看出此時(shí) BC<AB=AC.
現(xiàn)在,我們將 A 和 B 往上移,并且總保持 AB=AC(這是可以做到的,只要 A、B 的速度滿(mǎn)足一定關(guān)系),而當(dāng)A、B 移得很高很高時(shí),就得到①和②都是正確的.至于③,結(jié)合條件利用反證法的思想方法進(jìn)行說(shuō)明即可
解答 解:我們不妨先將 A、B、C按如圖所示放置.
容易看出此時(shí) BC<AB=AC.
現(xiàn)在,我們將 A 和 B 往上移,
并且總保持AB=AC(這是可以做到的,
只要 A、B 的速度滿(mǎn)足一定關(guān)系),
而當(dāng)A、B 移得很高很高時(shí),
不難想象△ABC 將會(huì)變得很扁,
也就是會(huì)變成頂角A“非常鈍”的一個(gè)等腰鈍角三角形.
于是,在移動(dòng)過(guò)程中,
總有一刻,使△ABC 成為等邊三角形,
亦總有另一刻,使△ABC成為直角三角形(而且還是等腰的).
這樣,就得到①和②都是正確的.
至于③,如圖所示.
為方便書(shū)寫(xiě),稱(chēng)三條兩兩垂直的棱所共的頂點(diǎn)為?.
假設(shè)A是?,
那么由 AD⊥AB,AD⊥AC,
知 L3⊥△ABC,
從而△ABC 三邊的長(zhǎng)就是三條直線(xiàn)的距離4、5、6,
這就與AB⊥AC 矛盾.
同理可知D是?時(shí)也矛盾;
假設(shè)C是?,
那么由BC⊥CA,BC⊥CD,
知BC⊥△CAD,
而 l1∥△CAD,故 BC⊥l1,
從而 BC 為 l1與 l2 的距離,
于是 EF∥BC,EF=BC,這樣就得到 EF⊥FG,矛盾.
同理可知 B 是?時(shí)也矛盾.
綜上,不存在四點(diǎn)Ai(i=1,2,3,4),
使得四面體A1A2A3A4為在一個(gè)頂點(diǎn)處的三條棱兩兩互相垂直的四面體.
故選:C.
點(diǎn)評(píng) 本題考查命題真假的判斷解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\overrightarrow{AE}•\overrightarrow{BC}$<$\overrightarrow{AE}•\overrightarrow{CD}$ | B. | $\overrightarrow{AE}•\overrightarrow{BC}$=$\overrightarrow{AE}•\overrightarrow{CD}$ | ||
C. | $\overrightarrow{AE}•\overrightarrow{BC}$>$\overrightarrow{AE}•\overrightarrow{CD}$ | D. | $\overrightarrow{AE}•\overrightarrow{BC}$與$\overrightarrow{AE}•\overrightarrow{CD}$大小不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=$\sqrt{x}$ | B. | y=x | C. | y=x2 | D. | y=x3+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com