【題目】如圖,矩形中,,為的中點(diǎn),現(xiàn)將與折起,使得平面及平面都與平面垂直.
(1)求證:平面;
(2)求二面角的余弦值.
【答案】(1)見解析(2)
【解析】分析:(1)分別取中點(diǎn),分別連接,可證明平面平面,可得,又,∴四邊形為平行四邊形,,從而可得平面;(2)以為原點(diǎn),為,正半軸,建立空間直角坐標(biāo)系,可得平面的一個(gè)法向量,利用向量垂直數(shù)量積為零列方程組求出平面的法向量,由空間向量夾角余弦公式可得結(jié)果.
詳解:(1)分別取中點(diǎn),分別連接,則且
∵平面及平面都與平面垂直,
∴平面平面,
由線面垂直性質(zhì)定理知,又,
∴四邊形為平行四邊形,
又平面,∴平面.
(2)如圖,以為原點(diǎn),為,正半軸,建立空間直角坐標(biāo)系,則.
平面的一個(gè)法向量,設(shè)平面的法向量,
則,取得
∴,
注意到此二面角為鈍角,
故二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無(wú)限增加時(shí),多邊形面積可無(wú)限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出n的值為( 。▍⒖紨(shù)據(jù):sin15°=0.2588,sin7.5°=0.1305)
A. 12B. 24C. 48D. 96
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了保護(hù)一件珍貴文物,博物館需要在一種無(wú)色玻璃的密封保護(hù)罩內(nèi)充入保護(hù)氣體.假設(shè)博物館需要支付的總費(fèi)用由兩部分組成:①罩內(nèi)該種氣體的體積比保護(hù)罩的容積少0.5立方米,且每立方米氣體費(fèi)用1千元;②需支付一定的保險(xiǎn)費(fèi)用,且支付的保險(xiǎn)費(fèi)用與保護(hù)罩容積成反比,當(dāng)容積為2立方米時(shí),支付的保險(xiǎn)費(fèi)用為8千元.
(1)求博物館支付總費(fèi)用y與保護(hù)罩容積V之間的函數(shù)關(guān)系式;
(2)求博物館支付總費(fèi)用的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是某地區(qū)2000年至2016年環(huán)境基礎(chǔ)設(shè)施投資額(單位:億元)的折線圖.
為了預(yù)測(cè)該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額,建立了與時(shí)間變量的兩個(gè)線性回歸模型.根據(jù)2000年至2016年的數(shù)據(jù)(時(shí)間變量的值依次為)建立模型①:;根據(jù)2010年至2016年的數(shù)據(jù)(時(shí)間變量的值依次為)建立模型②:.
(1)分別利用這兩個(gè)模型,求該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測(cè)值;
(2)你認(rèn)為用哪個(gè)模型得到的預(yù)測(cè)值更可靠?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)命題中,正確的命題是_________.
①已知點(diǎn),則的面積為10.
②若一個(gè)三角形,采用斜二測(cè)畫法作出其直觀圖,則其直觀圖的面積是原三角形面積的倍
③過點(diǎn)且在兩坐標(biāo)軸上的截距互為相反數(shù)的直線方程為.
④直線與直線的距離是.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某種水箱用的“浮球”,是由兩個(gè)半球和一個(gè)圓柱筒組成的.已知半球的直徑是6 cm,圓柱筒高為2 cm.
(1)這種“浮球”的體積是多少cm3(結(jié)果精確到0.1)?
(2)要在2 500個(gè)這樣的“浮球”表面涂一層膠,如果每平方米需要涂膠100克,那么共需膠多少克?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種新產(chǎn)品投放市場(chǎng)的100天中,前40天價(jià)格呈直線上升,而后60天其價(jià)格呈直線下降,現(xiàn)統(tǒng)計(jì)出其中4天的價(jià)格如下表:
時(shí)間 | 第4天 | 第32天 | 第60天 | 第90天 |
價(jià)格(千元) | 23 | 30 | 22 | 7 |
(1)寫出價(jià)格關(guān)于時(shí)間的函數(shù)關(guān)系式;(表示投放市場(chǎng)的第天);
(2)銷售量與時(shí)間的函數(shù)關(guān)系:,則該產(chǎn)品投放市場(chǎng)第幾天銷售額最高?最高為多少千元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三個(gè)警亭有直道相通,已知在的正北方向6千米處,在的正東方向千米處.
(1)警員甲從出發(fā),沿行至點(diǎn)處,此時(shí),求的距離;
(2)警員甲從出發(fā)沿前往,警員乙從出發(fā)沿前往,兩人同時(shí)出發(fā),甲的速度為3千米/小時(shí),乙的速度為6千米/小時(shí).兩人通過專用對(duì)講機(jī)保持聯(lián)系,乙到達(dá)后原地等待,直到甲到達(dá)時(shí)任務(wù)結(jié)束.若對(duì)講機(jī)的有效通話距離不超過9千米,試問兩人通過對(duì)講機(jī)能保持聯(lián)系的總時(shí)長(zhǎng)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓(a>b>0)的離心率,過點(diǎn)A(0,-b)和B(a,0)的直線與原點(diǎn)的距離為.
(1)求橢圓的方程.
(2)已知定點(diǎn)E(-1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點(diǎn).問:是否存在k的值,使以CD為直徑的圓過E點(diǎn)?請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com