分析 構(gòu)造函數(shù)g(x)=$\frac{f(x)}{{e}^{x-1}}$(x∈R),研究g(x)的單調(diào)性,結(jié)合原函數(shù)的性質(zhì)和函數(shù)值,即可求解.
解答 解:設(shè)g(x)=$\frac{f(x)}{{e}^{x-1}}$(x∈R),
則g′(x)=$\frac{f′(x)-f(x)}{{e}^{x-1}}$,
∵f′(x)<f(x),
∴f′(x)-f(x)<0
∴g′(x)<0,
∴y=g(x)在定義域上單調(diào)遞減,
∵f(x)<ex-1,f(1)=1,
∴g(x)<g(1)
∴x>1,
∴不等式f(x)<ex-1的解集為(1,+∞).
故答案為:(1,+∞).
點評 本題考查函數(shù)單調(diào)性與奇偶性的結(jié)合,結(jié)合已知條件構(gòu)造函數(shù),然后用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性是解題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,+∞) | B. | (0,+∞) | C. | (1,+∞) | D. | (-∞,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=3-x | B. | f(x)=x2-x | C. | f(x)=$\frac{1}{x}$ | D. | f(x)=ln(x+1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,2,4} | B. | {1,2,3,4,5,7} | C. | {1,2} | D. | {1,2,4,5,6,8} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com